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The technique is due to Good [1 ]

ABSTRACT

A technique is presented to implement a class of orthogonal transforma-

tions on the order of pN log N operations.. p

and implements a fast Fourier transform, fast Hadalnard transform, and a

variety of other orthogonal decompositions. It is sho·wn how the kronecker

product can be mathematically defined and efficiently implemented using a

matrix factorization method. A generalized spectral analysis is suggested

and a variety of examples are presented displaying various properties of the

decompositions possible. Finally, an eigenvalue presentation is provided as

a possible means of characterizing some of the transforms with sim.ilar

parameters.
2
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PREFACE

This book is the outgrowth of one week summer short course offered

at the University of Southern California in 1969. The course, "Recognition

of Two-Dimensional Images and Image Processing, 11 was heavi~y oriented

toward the use of digital computers in image processing techniques and

this book reflects such an emphasis. The contributors to the course reflect

a wide range of interests and backgrounds. Normally texts resulting from

conferences, symposia, and even short courses tend to be a disjoint collection

of as many different subjects as contributors. However, rather than simply

combining a diverse group of presentations, the material has been ordered and

edited in the interest of cohesion and continuity. It is hoped that such an effort

will make this text an efficient means of presenting timely and important mat--

erial without the usual delay of years of course notes and refinements before

final publication. Much of the optical material used as background originates

from a one semester graduate course which the author taught in the Spring of

1969. In addition much of the digital implementation of the material in the text

is related to the author's dissertation, June 1968. All of the results presented'

here have been implemented in the Electronic Image Processing laboratory of

the Department of Ele ctri ca I Engineering at USC.

The author would like to thank Dr. Zohrab Kaprielian for his encouragement

and enthusiasm for work on this project. In addition the interest shown by

Drs. Lloyd Welch,. Julius Kane and Irving Reed of the Electrical Engineering

faculty is greatly appreciated. Finally, the guidance of Dr. William Pratt in

the initial phases of the research presented in this book is enthusiastically

acknowledged as are his contributions to chapters 6 and 7.
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··2 " riORTHOGONA~ TRANSF~RMAT~ONS
2. 1 Introduction

, The technique of principal component analysis alluded to earlier is useel !':o £Lr,(~
th.t ortLogonal decomposition of an input waveform to a system. or OPC~2.L.')C·

Y/h~h describes a system. into a set of monot<;>nically decreasin'g cocif~cii.cr,~c·
and orthogonal functions such that any finite sum of the,coefficients ~ll1cl 2tSS~;':::: ..

':.ted functions result in the best mean square es~timateof the orieina 1 (htl, b
iidte dimensional vector space theory, such a technici~e results in <c ~;P(!c:tl'::,L :

~e~ornposition of an operat~r•. described in :natrix form, .into its ~et; ~)£ fll:tract:'f:t
lstlC vectors and cha,ractcnstlc va lues. In integral equation tern'll nolo-::I If i.he I

_.~:~~~~~,~t~_~~~__~~~~ig_~~~\{~!~es o~~~.~~_~~{~tion~~.~~~~~~.~._~~~~~_ :;.t_~~~~,l~,~~i'(L .....'_...•.,J
. L:::;~~J~.:~_~~/~~1';.; [(ItS Jilf(::!::.n:ttior!2!J::1"!2J:).9.~J_~~!:....s12!..!1~~~-·Machjnc~';Yf:tcms, ;:':'I)I(:J~1 ).0:1' ;,,1;, 'l~' .~~

. ' ).'his ,work was partially supported by the NASA l\1lJltidif:~in1in'u'Y I{o.::::e;ll'd, C; ";>nl ['(i,. 11,,-1;1 v,',

'}! '4,"~.' ,~,,~:~ 11f'. :-;''\' . '. :-:0. :.•.., ,; . • ,/,:'.•,~ ~ . . .... . _" "". " .

':' " ""DeciSiOd'Nlaking ~nd Pattern ~e'Qi6gnitionofMulti-Dimensional Datatt

.. l'<t~ TNT RODUCTION . <(. 5 by, H. C. 6\l!(:1't;,I':'; -,

.<, Man's com,;,unication with ~he Jm.a~hine s h~ huiIds ha s always he en an i:!rx ,-~~r.;'~I
feature in 1).,lS devclopment of eff1c1ent dCV1CCS to harness nature. For 31Pt~CldC

i.nteraction with digital machines. the initial cornmunication effort was <:<::';:'icf(:~:

to'entering binary data into an input devicc and receiving binary delta at ':;!le ot:t·· .
put terminal. Soon. though,more sophisticated forms of interfaces wC~C: c1cvel,~

oped. and the concepts of assemblers and compilers provided for contoJ free .
languages as :a basis .for communication. Eventually. two dimension"".l iLtEl'fctce~,
appearcd. and the theory of graphicdisplay systems provided cven highcjr LCVF.:l~; I
of interaction' between man and cornputers. Even today. three din'lensio;',::d ir:teJ .. !
faces are not too far removed from r'cality and will probably be in comnion IJ.S'~g;_ I
in the ncar futurc. Howcver. with the d~vc lopment of morc and morc, [;'1 Pl'\ is::.·· l
.c~ted tools for man to interac;:t with his machines; the machip.es spend ryj,.~·l'C' and I
more time decomposing the sophisticated multi-dimensional languages d"co i'
complltable problems which it' can solve. Therefore it becomes importctht to i

"r process information efficiently as possible. On'e method of impro'ving de
. I ,

efficiency of the communication channel to machines and the efficiency (l~f. inlplc-
mentation of certain computational tasks within the machine is throuF'li tl1c '..tSC d

. U I
principa I component analysis. I
The underlyJng concept in principal component analysis is the decomp.):;L~on c,i a.
rnathematical model of a system into a set of orthogonal functions £02' m~:.:(;
efficient representation of the system. The orthogonal functions2.re kn~,w..,. 8.E:

chal'actcl:istic or eigenvectors and the coefficients of the decomposition ~o:L' 2.

.5 pecific input are known as eigenvalues. Applications of such' a proceclaL,:'(; Z.:!·C

found in estimation and communication theqry. in terms of the Earhu:len!-Loe"f'
. - I

expansion. see Watanabe (1965) and Aigazi (1969), and in patternre.:ogrlttiQn

'studies. see Rao (1964). Raviv (1965) and McLaughlin (1968).. . i"
The object of this paper is to ~eve lop a. s~t of rapidly imPlementabl-e 01'1:1 C(.:.or':"J.).

transformations which, although not eigenvector solutions. wi11 provide b.n
.efficie·nt decompositlon of multi-qimensional data for a communication i{lt21'£~:.ce
..between man and machine and for implementation of various con'lput,ltbq2l: t2.3l,:,S

v)ithin the machine. Specific applications will include feature sclCCtiCl'l b·s·te:.;~·. , "

I in. a pattern recognition framework and noise imrounity and bandwidth rc'Jl Cti ..J~1

systerns iii 'an image processing framework. . I
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n-l

, '

u = u u u1uo u.tlo, 1. "'. .. , .p-l}
, n,-1 n-2 1.,.

,X = x x x1xo
,\ X' £(0 1_, p-l)

n-l n-2
. , ... ,.. ,1.

i

I
w'her~,0 implies the direct or kr'onecker prod).lct. ' If all of the matrices, H:~' I'

-"are square and of dimension P. then Hn has dimensionality pn by pn. Lh" t.hl I,
,~~ltrics ~f t.he r th matr.ix. H~. be given by ',mr • i. j where i and j arc the'lraw 2 nd II

r.::olumn l1ldlCeS respechvely. and let these Indexes range from 0 to p-l {,<".. the!'
than from. ,1 to p. By representing the horizontal row index by u ane: thel v2rtic1.! I

column index by x. the entries in a matrix can be determined by a 1cxicb::::2.pl~ic I
or dictionary counting scheme. For entries 'of H n , it is possible to l'cp~-escnt II

the u and x variable in the dictionary number system mod p which rc~quiJ:cs n
'digits to allow u and x to range over zero to pn_l. Therefore u and x cd" l)e' j'

described by"

II:!:. <..naly,ses, the Karhunen-Locve expansion theorem results. Calcllbt~or1<f'\f tn~,- -_. ~ ,- -~-~_. - .. _~ ...........-- ..- ~

ci.gen,values, and cige,nvectors in a digital con:put~r results in <.l,ll OJ:lL();~;0Il:l,l _ !
rnatnx of e1genfunctlons but such a computatlon 15 estrc11'1ely tunc ccnS\:J;'~1.1t I
;~nd suscept~blc to round off error for data sets of any reasonable (t;'-'C!~I~,iCJ:_2.i.i.l' .!

C~:msequently, a suboptimum. in an eigenv,ectcir sense, decorrlpositicn i~ c:<terl I
quite advantageous for computer implementation if speed and cfficic;-:r::y k:c.D be
pr,?vided. Such a decomposition techniql1.e results in the study of o,:thog;of":a 1 .;
r.1::l,trices. and the orthogonal transformations presented here are in'~p1c;-ne:-.1:2,bl-' i
on the order, of N log N les s computations as compared to ~2 cDnl,~,.<2'~t;(~ns
normally required. The transformations implementablc include the: F01.~;·:C:t.

V/alsh or Hadamard. Haar. generalized '\'[alsh. generalized Haar. 8rd C't: F1C-:.:'C

general class of orthogonal transfo~inations obtainable from a se:cies of;r::.~:;.~-::i..:~

kronecker products. If the inherent redundancy in the definition of OJ:<JJ~;:Jn::,1,

....na.tr.ix transforms, can be e lim~nat~d by ~atrix factorization., then t, m.c+E:. ,
effIcIent means of 1mplementatlon 1S ava11able. Such a techmque wa:::: Cll,,::l'Lbe e

by Good (1958) and has resulted in the fast Fourier transform. FFT. C(~o1E::y

and Tukey (1965), and the fast Hadamard translorm, FHT,' Whcche ~ anc-;j Gt.:.inn
(1968), as well as a much larger class of fast transformations describecl lcr.:r'c., , , ",' . I
Kr~l~ccker' Products ' ' . .' " I "
Decomposition of an input waveform into a set of coefficients of orthogol~·tl

waveforms for generalized spectral analysis is-equivalent to a vcct:or".rJ',t,ix
, I

multiplication if implement~d on a digital computer. If the matrix c1di.n;.~1g the
decomposition can be factored into a kronecker product of a set ci n1J.-tqc f.;s,
then implementation of the transformation can be accomplished with a r~~duc(;d,

,number of arithmetic 'operations. Consider the class of matri'ces L:n'mdd by
the kronecker produ.ct operation. I

,', : ~ to ' ,
Using such a notation allows the/entries of the p by p r- matrix, HI

, 1"
d,cscribed by the equation

J .J'

2 ')

'1
i

..
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• ".' ,c'.. '. • H (x. u)'
. _;;J. ~~: I -.~.-,.~' ~. 0 • ~ ~ 0 r. .. t ••

.. . . .' ~~.

;, ,"

W1?-e'~~ the exponent operations become Boolean' "and" ppe.raF9n~":,;,'andth
thebii;lary:variable repres~nts the complement value. For'the' ta.se in w
:H~,.=- H~'for' all r a'nd s,' the repres'entation again simplifies ,and~becomes

.~. ' ".~, "~:';..;' " ,'. "'n-l , n-l' . n.:l· n-l',: 'f>
. .L:':;C u L: x· u L'x u' ,'E,:~-.'ti,

O rr 0 r r . 0 r r ... , O· .r. r '
H (:k:''Ul= A r= B r =: .~,. Cr = '····'D~=' ;<, '

n ' , '1'.,.:','

.• r'

\" ..: 'p-l p-l . .
= .n' .n .'m6(:r~~l6~ur-Jt :"'"

l=OJ=O.; r,l,}·, . ','.' .,.~:.~~
. ~.' '~"'.:' ", , . . j.~, . . iJ .

. ",:., I",~.t.... " ..".. ~ I" ~ ,'~~'" _ ,

, ' Wh~re'6{a-b} is thediscre'te delta function which tak~s'On -the:yalue ilone'l; when",
.;. ~~er ''; '::: b· and zero oth~rwise. The representation!c>f ~quat.ion(3rcan bel i,nter~
'''' PJ:'~t~,~.~s\multiplyinga~l ~ntries of the mitrix, "H;, iO$ethe.r·,~n~:n'o~in~tt1B;tar

but,one entr,y will' be raised to the zero po~er. ,In general;, ~h~,~~!1~~},es X91: the
; ~ b~kronecker product, equatfon (1), .can be: represented ,as :,' , '," ~,

, ,,;;:. "'.:' .' - ,~.'" " '~' i, .. n-l p-l p~ 1 : . ,.' .,:. "'<;'"::-':.::'> ~', ,
., ~;',\- ',' H (x, u): '= r !! - :n, ·.n n/)(~r,~i)6<,ur-J)., ;, ..,,<~,; " h' (I:>~f

" ,., ,>' n' ' r-O 1-0 J-O'" r,.l,J' ", "'-;' .;_. ~

, .:: '" :." ": " · . ,', .', " ,,' 'i; _'.,~ ..i ' 1\ \1

".,'.' ".h~re" a~a.in, the exponents determi~e the. co~rect pr,oquct or e:ntries [Ol..:! a 'g1yZC. (;.
" Jfow'~nd c;olumn apd thus a~t as a bookkeepmg mdex. F;:or the:kroneckeX' prod\1,~t

" 'orh~entical matrices, H I := HI for'all r and s~' . ' .. "~" ".' I" ;.

"" '" r' s ~1 " l ,.,.. " I _'i
': . i ',.. " ' " p-l p-l ~. 6(x'r-l)6(u~-1) "'.;, ':' .... ',l: !r'

,;" .... H (x,.u) ':::" .no· .go m~=. . ,. -}";" «of:'b'
) ~ ..:";' n· . .", 1-:, : J-:- 1. J (J' \-'. ' 0 .; • • ..~. ., ~ -, l'

...... X:;~rde~ t);.:t·H.,(x, ~; b~ ~~thogOna1 it is's~ficieJtha: e::~ ~~' LorthOgL1 br ••

.. a~~ r ~ ~.:Fo~,,'p :: 2' the resulting kroJ::le,cket products, Hn'~ hav~,r~solution~ =2°
~ndthe close~ prqduct'f07'm of equation.(4a) bec~mes partic~l~;lyconvei:1ient1;,)

, rdescribe: '. 'Let the r th matrix', HI" be""" .' .,',~ .... '.:

,:+',' ;',' , ',:.:--.- ~ ,H~= . r[~r, :~]' ',.., "'",

,,". ':''':h.; ,.1' . r ", r ~ , i' ,

.. ' . T!'~~th,~ ,closecJ. p'r~d~t r~presentatio~ for HI' nowb;co';'e~';c:
-.",:. n~vl': ~\: ...... ~~." _... _, .~: .;.. ~.

'_ ,:' ',,'~" "'.' ." : '. H (x,~5 = n ,. A":r.ur BJfrur cXrUr'j)~rq'r;.' '..
. ;,.,' n r=O r'· r . r r;, .c.,

;;. ,

.>
"

!,

:::':' .
.. ,.. , ,

"

"'..1'", ,.'.

.. .-. . ..;. ."J ~- .....~ l '.. :

...,.,...""*...".,.i....""',"-b~""'...~_."".~..,.·":'.•,~:,~:::':,':;::;~,:::;-·7',."",},-;;:.;..i.tc.;;:~,.'7~,,",::-:i.*,,a:i';.~7:<.(c,,~:cc.".~_;"',__:·:""'~-....J.,;.,i';':',:....~<:--,,~""]:".'o:J!S.,:::~~:>i;;..:-::,.;r.t"".;.~;;..8:~·~.:~-ii~.;._;~~C;-""""-:_~~""',~",,:;:"':;.":'c'~~""':"';:-"""~""i~':"'~·"":'.";"'~"'.""":~:':'r·~""~";~:'-:~ .J!...,',__~.•.:-.:."':",~~~-,~-~":,~-._•...'-:-,,. _f ' . ..__

---.;;~ -'--:;~------'-~- -- ~-- --
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ThllC:

8 B c

H (x, u) = An (( 1 - A 2))
n A2

1/2
n-1

L u (±)x
O
rr

1'=

11-1

L:
(_1)1'=0

u x
l' l'

(8)

.
t.

·0

1
"
>

where 0) implies an "exclusive 01'11 Boolean operation. The class of matrices
described by equation (8) is a one parameter family of sets of kronecker! matrices.
Consequently, valid 2-tuples, [A, B}, defining such matrices are [cos ~, sin 81 I
[I,O}, [l/-VZ, 1/.,.j2} and others. Some of these will be explored in greater detail
later.

2.3 Matrix Factorization
A major premise suggested in the introduction was that if highly redundant
matrices could be factored into a product (not kronecker) of n"latrices \v~th few
nonzero entries, then a fewer number of operations would be necessary Ifor
transformation implementation. Good (1958) has shown that for matrice,s which
have a certain degree of redundancy and which have resolution equal to a highly
composite number, they can be factored into a product of matrices whic!l allow
vector-matrix multiplication in pN 10'gpN operations as compared to NZ bper
ations where N = pn as in our examples.

, .

'0.' ."'.,~

(9a)

Then

o

o

v
p-1-

HI and 0 is the zero vector.
l'

o ...

=G
r

___0 0

h . h .th f 1were v. 1S t e 1- row vector 0 t 1e matrix
1

,Good's technique of matrix factorization can be used to decompose the c ass of
kronecker matrices described by equation (1) and (4a). Thus for the H n matrix
of these equations there exist n matrices, each of dimension pn, such tHat when
multIplied together, they will equal H n . The matrices can be des cribed! as

r--

v o
o

(9b)

Now if a data vector is multiplied by H n , N
2

operations will be required, whereas
if the vector is multiplied by Gn _l' pN operations will be required. If tt1e
resulting vector is multiplied by Gn-Z' another pN operations \vill be re8ui1'ed.
If this step is carried out n = log N times, tl1('11 a total of pN log N op()rations
are necessary. Notice that for t~c case wIlen II~. = }-]~, i. c., whrl1 the J.anle
matrix is kroncckcrcd with itself n times to form Hn , then

H
n (9c)

-,

----._--------------------------



2.4

~

A For a slight n:odification to equati:..?.~_J2~ for a discrete Fourier transfJ\.m C
see Whechel and Guinn (1968). ---- L
Examples.
Specific transformations which are readily implcnwntablc in the context, of the
above kronecker and matrix factorization techniques include the Fourier,' Hada
mard or Walsh. Generalized Walsh, Haar, Generalized Haar and a variety of
other unnamed transforms. Refering to equation (8) it \vas indicated th~t the
2-tuple given by [cos e. sin e} describes HI for all r as

l'

-I

HI =
r

[

COS e sin 8]
sin 0 -cos 8

(lOa)

As 8 varies from. 0
0

to 45
0

the resulting kronecker matrix varies from diagona I
matrix to one in which the energy in each row (and column) is uniformlyldistri
buted over every entry. The matrix is given by

H (x. u) =
n

n
cos

n-l

L u (±)x
1'-0 l' l'

e (:~ ~)

n-l

L
(_1)1'=0

u x
r l'

(lOb)

( lOe)

u x
r l'

H (x. u) =
n

as can be seen from equation (8). When e = 0
0

we use the fact that zerol raised
.to the zero power is one and when e = 45 0 this matrix reduces to the Hadamard
matrix of order 2 which is equivalent to the discrete Walsh transform. Walsh
(1923). The matrix of equation (lOb) then becomes

n-l
L

(_l{=O

The Walsh transforrn has been genera lized to a much larger class of ort ogonal
transformations by Chrestenson (1955) who has. described many of the c~nvergenc
properties of this expanded class. In discrete matrix notation the generalized
Walsh transforms of order p require II~for all r to be given by

(lla)

where W = eXP12TTj / p} and s implifica tions can be made due to the fact that
Wux = W ux mo p. For an N by N discrete generalized Walsh transfor I where
N :!. pn, the matrix is given by

p-l p-l
H (x. u) = IT IT

n i=O j=O
w

ij
n -1

L~
1'-0

6(x -i)6(u -j)
l' l'

(lIb)

r
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Hadamard tri-tns[orrn. It is also interesting to note thnt the generalized ~valsh
transform of order p, equation (lla), performs a Fourier transform of lcsolu
tion p. However, the kronecker product of the generalized Walsh transform,
equation (lIb), no longer performs a Fourier transforma tion.

Another class of transformations not already discussed but which have very
efficient factorizations is kno\vn as the Baal' (1944) transform. The Baa~ matrix
is comprised of ones, minus ones, and zeros and is directly related to t~e Walsh
transform, sec Alexits (1961). It is an orthogonal transformation, and ~n terms
of sampling theory, samples the input waveform at progressively coal'S l'
intervals starting with the highest resolution and decreasing in powers 0 two.
An example of the Baal' m.atrix for N = 2 3 is

1 1 1 1 1 1 1 1

1 1 1 1 -1 -1 -1 -1

" ~2 ..{2 -~ 0 0 0 0

H
0 0 0 0 ~ ~ -~ -~ (12 )=
2 -2 0 0 0 0 0 0

0 0 2 -2 0 0 0 0

0 0 0 0 2 -2 0 0

0 0 0 0 0 0 2 -2

As with the Walsh functions, the Baar functions can be generalized to contain
entries of roots of unity other than ±L Watari (1956) has described the ~eneral
ized Baar system and has shov.'n it is possible to preserve some of the ohginal
Haar convergence properties. The generalized Baal' transform factor iAto high
dens ity zero entry matrice s resulting in a requirelTlent of p(pn_l) / (p-1) ~pera
tions for implementation. This i~ a geometric progression and is even less than
the pN log N figure obta incd ea rlier .

. ' p

3 PATTERN RECOGNITION

3. 1 Orthogonal Functions
'In the development of pattern recognition schemes orthogonal functions ften
playa major role. Mathematically the pattern recognition task can be dbscribed

a~ a rr:apping from a pattern s.pace to a classification sp~ce. Usually th,1 dimen
slOnahty of the pattern spJ.ce IS far too large for convet1lent usc and an Ihter
mediate space, the feature space. is often employed. The feature spacJ. is that
domain, of vastly reduced dimensionality cornpared to the pattern space (raw
data), com_prising the results of some feature selection operation on the original
pa t tel' n s . C e l' ta i n 0 l' tho Z0 11 a 1 t l' a nsf0 r mat ion ~3 0 n p:.t tt e l' tl Seanbc usc cl i n f cat u r e
selection and enable rnan to In01'e easily make decisions and classificati6ns by
observation of some parameter of the transform rather than original dath. A
classic example of such a procedure is the usc of Fourier analyses in th6 dis
covery of unknown periodic phenOl1wna bllri(~cl within some stochastic prj cess.
------- ------------ ------- ----------------------------------------1
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in the rotated sface is
Thus, for any fiven

are obtained, 0 e for

i = 1.... , N

..

One technique for finding the most relevant dimens ions
to maximize the variances over all rotated prototypes.
rotational transformation, [T.tJ, N variance measures
each dimension in the transformed space.

Often, though, the Fourier technique is. ina~?r.?pr~ate for certain prob~1ms and C
Bremermann (1968) has suggested the usc of the Haar transform for sPJ~ach

recognition. Crowther and Rader (1966) have successfully applied the radamard
transform to efficient coding of vocoeler chZ1.nnel signals and Boulton (1166) has
used the Hadamard transform as a means of dimens ionality reduction o~ the
pattern space to the feature space. In general the optimum. transforma}ion of
the pattern space to the feature space for dimensionality reduction is glVen by
the principa 1 component analysis technique alluded to earlier. Howevet the
re~ulting or~hogonal transformation is optimum in a x:nean square err04 se.nse
whlch often 1S not the most advantageous transformation for feature selection.

Maximizing Variance
By interpreting each data point in the pattern space as a dimension (a data point
can range over the real line or complex plane), then an orthogonal tran:sform
ation of a vector of N data points is equivalent to an N dimensional coordinate
system rotation of the original pattern space to a rotated pattern space~ Assum
ing there exist K prototype vectors, Pk> in the pattern space and the rotational
transformation is given by [T..e.J, then K rotated prototype vectors, vk.l..e. =
Pk[T.tJ, will exist in the new pattern space. The procedure is to now lind the
most relevant dimensions in a given rotational transformation space so that
the classification mapping can now be based on a fewer number, M, of, elevant
dimensions in the new space as compared to the full dimensionality, N, of the
original pattern space.

,

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
{l3} I

where E t· } is the expectation operator over all K rota ted prototypes. . f the ~
'coordinates are ordered according to their variances, then the M dimensions I
with variances above a threshold become the M dimens ions most relevJnt to the
particular classification problem at hand. The set of M(.t) largest varicince I
dimensions is defined as the maximum variance set and is a function of! the

, particular rotational trandorrnCltion indexcd by.t, [1'.tJ. It is now sugtested I
that minimizing M{.t) over a variety of L transformations will provide ~

, adaptive procedure for finding the best transformation of a class of tra! sf01'111- I
ations for a given recognition problem. defined by the K original prototy es. Th
feature spaces obtained in this manner will contain mln(M(.t)} dimensions and I
will be independent of normally heuristic feature selection procedures.l The
class of L transformations or rotations might initially be selected frol:1 those I
irrrplemcntablc in the efficient manner described in the preceeding section. I

Un~il now" nothing s~)(~cific or c,x p cr,ill1cntal,11as bl~cn present.ed. in tl~e i!ftercst I
o~ nnpr~vlng 1:1anr~ Interfac~ with l~lS nla~llln:s. However, It l,S cVldCt~t that
wIth a dInlens~onahty rcc1u,ctlOn deVice WblC,h .1lnplelTlCnts an :ffIcient mtans ofl
feature selcctlOn as described above, the (hgltal computer Will be avaUhb1c fo

_gr-=:~e~.~~~~puta=ionalt~.sks. Experimental effort using the orthOgOnall~j

I
:J

A

3.2

>.
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efficient, noise free transmission froll1. two din1ensional terminal devices to
computer. Results of this appEcation follow.

,
4 IMAGE PROCESSING

4. 1 Introduction
. Because of the two degrees of large correlation in most images, certai trans ~

formations become quite efficient in storing a large percentage of the i age's
energy in a very few transform domain coefficients. Transformations \ hich are
especially suited for cornpacting correlated energies are the Fourier ana Hada
mard or Walsh transforms. Pratt, I<ane and Andrews (1969) have showI1 that
both the Fourier and Hadamard domains provide both a bandwidth reduc1ion and
potential noise immunity for digital communication. Specifically if f(x, y) is a
grid sampled image of N 2 data points, where N is a power of 2, then the Fourier
and Hadamard transforms are given by

1
N-l N-l

exp {_ 2~j (ux + v y )}Fourier: F(u, v) _. L I: f(x, y)
N

x=O y=O
n-l

N-l N-l L u x + vrYrr r
Hadamard: F(u, v)

1 L I: 1'=0
= f(x,y)(-l)

N
x=O y=O

( 14a

(14b

..'

. where equation (14a) is the traditional Fourier transform definition and equation
(l4b) derives from equation (10c) as presented earlier. Notice that the pnly
difference between the two transformations are the kernels and their different
uses of the roots of unity. Figure 1 presents the results of implemcntidg equa
tions (14a) and (14b) on the Surveyor spacecraft boom scene. The dynarhic
range in the transform domain is so large that for display purposes all ~hose

-.coefficients above a threshold in both the Fourier and Hadamard domainb are
set white while all otl1Crs are made black.

4.2 Bandwidth Reduction
Because the transform domains tend to compact the correlated energy it an
image, relatively few coefficients need be actually transmitted to recon~truct

.1 a high percentage of energy of the original picture. One technique of bahdwidth
1 .

reduction using the transform domain is threshold coding in which Pratt and
Andrews (1969) have shown it feasible to transmit only those data points above
a thresho Id and ignore all other coefficients. Figure (ld) dis plays appr~ximate ly
a 4:1 bandwidth reduction reconstruction using such a technique. Had tlte
transformation been the orthogonal matrix of principal con1ponent vecto s, then
the".reconstruction of Figure (ld) would have been optimurn in a mean sq rare
error sense. Unfortunately a mean square error reconstruction criterih is not
subjectively pleasing to the human viewing phonemena.

4.3 Noise Immunity
The compacting of correlated energy in the transforn1 dornains can also be used
to advantage in a noisy digitZll environment. Consider a two c1imension~\
---~-----~---_._-------_._----------_._-~----_._-------_. -f----
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terminal device which r:!:lust communicate with ~ COI-r:P_~~.<:~'y'er a digita~ com- C
munication link (either wire or wireless) that is subject to binary symm tric
channel error. By error correct coding those few data points which re~resent

a large pel,"centage of the energy in the image, an effective noise immun ty is
achieved. Andrews and Pratt (1969) have shown the effectiveness of su h a

pr'ocedure. The parity information necessary to construct the error COt'rection
coding will add bandwidth to the system. However, an equal bandwidth rans
mission system can be achicved by not transmitting those low energy co fficients
at the expense of thc parity information. For a Fourier noise immunity error
correction coding, this results in a low pass filter effect. Figure (1e) s,hows
the result of passing the image through a binary symmetric channel wit9 an
error rate of 4 x 10-2 . Figure (1£) shows the reconstruction of the Fouljier
transform after pass ing through the sa mc channc 1 and error correction toded
with a BCH (31,6) coder, see Peterson (1961). The cost of the error c:orrecting
capability was obtained at the loss of some high frequency terms in the econ
struction proces s .

.'

5 CONCLUSION

This paper has presented an algorithm for the efficicnt implementation fa
variety of orthogona 1 transforma tions on a digi ta I computer. A few of t~e trans
formations include the Fourier, Hadamard or Walsh, Generalized Wals~, Haar,
and Generalized Haar. The paper then proceeded to present possible ar1eas of
applications of these transformations in a man-machine environment. 1wo such
areas included patte 1'n recognition and image process ing. A pplications of trans
formations in the former area include signature analysis and maximum ~ariance
techniques for pseudo-optimum adpative feature selection and dimension1ality
reduction. In the latter area of ilnage process ing, various transform.ati'ons are
presented which provide for a bandwidth reduction" and potentia I nois e irr1munity
in a digital environment. In all instances, the underlying assumption is 'that
with use of the fast orthogonal t;ansforms presented here, machines ca1 be much

"more efficient, and the transn~ission and recognition as well as process ng of
data between man and machine can be better implemented.
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Figure 1. Computer Irnage Processing (Surveyor Spacecraft Boom).
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KRONECKER MA TRICES, COMPUTER IMPLEMENTA TION J

AND

GENERALIZED SPECTRA

ABSTRACT

A closed product form. and a sim.plified algorithm. for efficient m.atrix

operation is pres ented for a class of generalized kronecker m.atrices. Powers

of two kronecker m.atrices are further described where the closed form.

representation is easily im.plem.ented with parallel binary register operations.

Orthogonal and sym.m.etric orthogonal kronecker m.atrices are described in

~ .
the context of generalized spectral analys¢s. Specific applications are presented

which include the Fourier, Hadam.ard, and other transform.ations.

/()J
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KRONECKER MA TRICES, COMPUTER IMPLEMENTATION,

AND

GENERALIZED SPECTRA

Introduction

Often orthogonal matrices will playa major role in the study of spectral

analysis and efficient decomposition schemes for unknown functions on a

digital computer. A certain class of orthogonal matrices are described

which are very efficiently implemented for computer application. The class

of orthogonal matrices described are shown to be a subset of a generalized

class of Kronecker matrices which also have a very efficient computer

. implementation algorithm. It is hoped that certain of thes e matrices could

be useful for efficient signal processing in the form of possibly multi-

dimensional transformations.

A Generalized Class of Kronecker Matrices

Consider the clas s of matrices formed by the kronecker product operation.

Let the sub-matrices be square and of dimension p by P with entries m ..
r ,.1, J

where i and j range froI):1 zero through p - 1.

=

m
r, 0, 0

m
r, 1,0

m
r,p-I,O

m
r, 0, 1

.././. .

'"
I~

m
r,O,p-1

m
r,p-l,p-l

(1)
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Here the first index represents the class of entries corresponding to

a particular dimension in the kronecker product operation. In general

, (2a)

(2b)

H
n

(2c)

where ® is the kronecker product operator. Thus

m
n-l,O,O

H
n-l

r"r_ ,'£.,,- -..- • •• . m
n-l,O,p-l

H
n-l

m H
n-l,p-l,O n-l

"H' =
n

m
n-l,l,O

•

•

•

H
n-l • •

•

• •

•

m
n-l~l,p-l

H
n-l

•

• (3)

•
'-

m
n-l, p-l, p-l

H
n-l

h H · n b n .were 1S a p y p matnx.
n

When operating with kronecker matrices within a computer, it becomes

desirable to store a representat)on (algorithm) of the entries of the product matrix
/

rather than the matrix itself. Towards this end, consider the locations in

-2-
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the matrix to be described by their lexicographic or dictionary sequence

representation. In other words, a given index of matrix H can be
n

represented by n digits each of which can take on the value zero through

p-l. . Representing the horizontal index by u and the vertical index by x,

columns in dictionary sequence for the H
2

matrix

HZ(x, u)

the names of the rows and

with p =3 are

00 01
00

xl 01

02

10

H
2 = 11

12

20

21

22

02

u

10 11

)
12 20 21 22

(4)

Representing the u and x variables in the dictionary number system mod p

n
requires n digits to allow u and x to range over zero to p. Therefore u and x

'Cc:n be described by

u = u u 2··· uluOn-l n-
u. do, 1, ..• , p-l}

1

x. do, 1, ... ,p-l}
1

(Sa)

(Sb)

Using such a notation allows the entries of the p by P core matrix HI

[equation (2a) ] to be described by the equation

p-l

HI (x, u) = i~O

p-l

. ITO"J=
( 6a)

Hl(x, u) = m
0, i, j

-3-

(6b)
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where 6(a- b) is the delta function which takes on the value one whenever

a=b and zero otherwise. The representation of equation (6a) can be interpreted

as multiplying all entries of the core matrix, equation (Za), together and noting

that all but one. entry will be raised to the zero power. The entries of the

pZ by pZ matrix, HZ' equation (Zb), can now'berepresented as

HZ(x, u) =
p-l

IT
i=O

p-l

•ITOJ=

p-l

i~O

p-l

•ITO
J=

C(xO-i) 6(uO- j)
m

O
••,1, J

(7)

where, again, the exponents determine the correct product of entries for a

given u and x. In general, the entries for H can be represented as
n

H (x, u) =
n

n-l
IT

r=O

p-l

i~O

p-l
.noJ=

(8)

following the recursive notation of equation (6a) and (7). Representation of the

rows or columns of a kronecker matrix in the form of equation (8) now allows

the generation of any single element, column, or row of the matrix without

storage of the entire matrix array. This becomes particularly important
'-.

fo'r large matricies especially in the area of generalized spectral analysis

to be described later .

. In addition to ,representing the kronecker matrices in closed product

form, it is important to pointout that vector multiplication with the

above described matrices can be implemented on the 'order of 'pN log N
. P

operations where N ~pn is the dimension of the H
n

kronecker matrix. This

should be contrasted with the N
Z

operations normally required. This result

/' '

was pointed out by Good [1 ] ~ is referenc~dby the Cooley Tukey algorithm [2J, and

.le~ds to the ~ast Had~marde-t.ransfor.m:lgorithm [3,.~J. 1'ariation 0+
the Fourier' algorithm, for parallel processing, is pr~sentedby Pease [5J. The class

-4-
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kronecker matrices described above can be decomposed into a product of

matrices each of which has only p entries in a given row or column. Thus

for the H kronecker matrix of equation (3) there exist nmatrices, each of
n "

dimension pn, such that when multiplied together, they will equal H. These
n

matrices can be described as

m ,.. .,m
r,.O,O r,O,p-l
"., .

moo'· .. ,m ° -1r, , r, ,p

mOd· .••, mOlr, , r, ,p-

m 1 °,...,m "1 _ 1r, , r, ,p

m 1 0'·· .,m "1 -1r, , r, ,p
., - ,."

.1. . i

m 1 0.. ···' m 1 -1r, , r, ,p

.........
.' e· ••••.••

m 1 0'···' m"," r,p-, r,p,1,p-1

m 1 0'·· .~m"r,p- , ;r,p .. l,p-l ..

m 1 O·,···/Xl 1r,p- , r,p-l,p-

n+1 2
In this matrix there are p non-zero entries and only p non-redundant

elements.

>-5- _.

(9)
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Then

( 10)

Now if a row vector is multiplied.on the l~ft by H
n

, N
2

=(pft)
2
operations will· be required

whereas if the vector is multiplied by G l' pN operations will be required. If the
n-

resulting vector is multiplied by G 2' another pN operations will be required.
n-

1£ this step is carried out n = log N times, then a total of p N log N operations
p p

are necessary.

By using the Good algorithm described above and by using the closed

product representation of equation (8) a kronecker matrix of large dimension

can be generated and matrix-manipulated without storing the N
2

term matrix.

Conceivably the set of coeffcients m .. of equation (8) could all be distinct,
. r, 1, J
".-- 2

in which case a total of only np coefficients must be stored. However when

the class of m . . are not all distinct, considerably more savings can be achieved.
r;, 1, J

It is instructive to investigate the clas s of rp.atrices generated by the kronecker

operation with the m .. = m .. for all rand s. In such a situation equation'
. r,l,J S,l,J

_( 8) reduces to

p-l
H (x, u) = ' 11

n i'=0

p-l
11

j=O

n-l

. '""' o(x -i) O(u - j)
~ r r
r=O

m ..
1, J

( 11)

Now only p
2

coefficients need be stored compared to np
2

terms.

Powers of Two Kronecker Matrices

1£ the general matrices described above are generated from a two by two

core matrix, the closed product representation analogous to equation (8)
. / .

becomes particularly convenient to implement. Let the core ~atrix HI be

-6-
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and H can be represented as
n

('12)

A
n-l

H
n-l

B
n-l

H
n-l

H = ( 13)
n

C H D H
n-l n-l n-l n-l

The closed form product representation now becomes

. n-l
H (x, u) = . II
n. r=O

A xrur B xrur C xrur D xrur
r r r r

( 14)

where the exponent operations become Boolean "and" operations, and the bar

over the binary variable represents the complement value. For the case in

which A = A ,B = B , C = C ,D = D for all rand s, the representation
r s r s r s r s

'again simplified and becomes
S

H (x, u)
n

n-l
2:~ ~

r=O r r
= A

n-l

1:
r~O

B'

x u
r r

n-l

L x ~
r=O r r

C

n-l

L xu
r=O r r

D (15)

Equation (15) is particularly suited for special purpose digital implementation as

the exponent operations require simply counting the number of "ones" obtained

from a parallel component wise register "and" operation on the values of u and x.

>-7-
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This means that generation of the rows, columns, or specific elements

of the matrix H requires storage of only four variables (A, B, C, D) and
n

simple register "and" operations for any dimension N = Zn. Then to

implement a vector-matrix product will require ZNn = ZN logZ N operations

with a storage requirement of only 4 variables.

Orthogonal Matrices and Generalized Spectra

In the area of signal processing, it is often desirable to perform some

type of transformation on a function in order to learn more about that function.

Certain computational proces ses of particular interest are discrete orthogonal

transformations on input functions in the search for characteristic properties

of thetransf~rmdomains otherwise obscurred in the original data. Because

of the restriction of digital computation to discrete operations, it is natural

to think of digital transformation processes on digitized functions in the

context of matrix algebra. In such a situation let the input function be f(xl.

considered as a vector in the x dimension with N= Zn samples and let th.e

transformation matrix be H. Then the transformation operation can be
n

expressed in matrix notation as

[ f(x) ]xJ
=

[ F(u) 1
\

(16 )

Where the vector F(u) is the transformation result of the vector-matrix

multiplication. The function F(u) can now be expressed in arithmetic form as

./

, F(u) = ..~ f(x) H
n

(x, u)
x

-8-

(17)
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where H (x, u) can be considered the kernel of the transformation process.
n

If the matrix H is constrained to be orthogonal, then the linear trans-
. n

formation can be interpreted as a decomposition of the input data into

generalized spectra where each spectral component in the transform domain

corresponds to the amount of energy of that spectral orthogonal function within

the input data. Using such a concept, the idea of frequency can now be gener-

aiized to include transformations of orthogonal functions other than sine and

cosine waves. This type of generalized spectral analysis will allow the

investigation of specific orthogonal decompositions which could be "better"

matched (in possibly an eigenvector sense) to specific purposes and input

data classifications [6]. In passing it should be noted that the above discus sion

can be generalized to multi-dimensional transformations resulting in

I ... L f( (1) (P»H( (1) (1) (2)(2) (p) (p))
(1) (p) x , ... x x, u , x , u , ..., x ,u,

x x (18)

where the 2-tuples ()i), u(i)} relate the )i) dimension data space with the

-c<;>rresponding u(i) generalized spectra.l components in the transform spectral

space obtain~d from that particular x(i) data dimension. An example of the

application of such a multi-dimensional concept is one in which the o'rthogonal

,
basis vectors in a particular dimension of the data space are matched to the

natural eigenvectors of that dimension. In other words a Fourier transform

might be applicable to one dimension of data whereas a Hadamard transform

might be more applicable to data transformations in a second dimension [2,3,4].

-9-
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A general class of orthogonal transforms of particular interest can be obtained

from the kronecker matrices described in earlier sections by requiring that

the sets of variables (m 0 0"'" mIlJ satisfy the orthogonality
r, , r, p- ,p- .

requirement for all r =0, .. , ,n-l. If this constraint is satisfied, then the

matrix, H , of equation (3) or (8) becomes orthogonal and is a valid candidate
n

for a kernel in a generalized spectral decomposition problem. For the power

of two case the orthogonality constraint on the sets [A ,B ,C ,D } for all
r r r r

r = 0, ..• ,n-1 reduces to

A 2 + B 2 = 1 ( 19a)
r r

C 2 + D 2 = 1 ( 19b)
r r

A C + B D = 0 (l9c)
r r r r

for each r. In this case equation (14) becomes the kernel of the transform and

when the sets lA ,B ,C D Jare all identical, equation (15) becomes the kernel.
r r r r

If ~t is desired to make the kernel matrix symmetric so that a transformation

~aken twice results in the original function again, then further simplifications

result in the closed form representation of the matrix H. The requirement
---._- n

for symmetry and orthogonality for the case of identical sets lA, B ,C ,D }
r r r r

'for all r is

B=C

A
2

+B
2

=1

B
2 + D

2
= 1

//

(A + D)B = 0

-10-
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(20b)

(20c)

(20d)



n-l

~ u0xr r
r=

B

The entries

29

of the matrix H become
n

n-l

.~ ur~r
H (x, u) = Ar

=
n

. ~. .-

n-l
~ u x
fto r r

D (21)

Where (£)implies an eXclusive'~lor" Boolean operation. Notice that the exponents

can be determined by summing the result of parallel register operations

(Boolean "and" and Boolean "exclusive or") on the variables u and x. However

equation (21), under the constraint that B = 0 satisfying equation (20d), reduces

to

n-l n-l

t6 u r ~ u
r

a (x, u)
r=O

6(u-x) (22a)= A D
n

n-l
or ~ u r

~)H (x, u) = 6(u-x) (22b)
n

which is a diagonal matrix. The alternative constraint to equation

(20d) is that A = -D in which case more interesting orthogonal symmetric

matrices result .
.........

H (x, u)
n

exr ~ u x·
r r

(_l)r:: (23a)

or' ~~ u G)x

Q
2 ~ r r

n I-A)Hn(x, u)= A A 2
~ ux

r r
(-l{= (23b)

where0 is the Boolean "coincidence" operation equivalent to the complement

./

of the exclusive "or"operation. / The class of orthogonal matrices described by

equations (23) is a two parameter family of sets of .kronecker matric~s

-11-
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subject to the constraint that A
2 + B

2
= 1. Consequently, valid 2-tuples

satisfying this requirement are (cos e, s~ne}, (3/5, 4/5}, (1/{2. l/{i }

and many other s .

. Applications

Specific transformations which are readily implementable in the context

of the above kronecker and matrix factoriza~ion techniques include the Fourier,

Hadamard or Walsh. Generalized Walsh. and a variety of other unnamed

transforms. Referring to equation (23b) it was indicated that the 2-tuple .

given by (cos e, sine} describes M for all r as
r

[ cos e
_. M =_.k .. r

sin e

sine J
-cos e

(24)

As e varies from 0
0

to 45
0

the resulting kronecker matrix varies from a

diagonal matrix to one in which the energy in each row (and column) is

uniformly distributed over every entry. The matrix is given by

n
= cos e

n-l
I

. r=O

(
sin e )
cos 8

u t:j:\ x
r \2..1 r

n-l

I
(-1) r=O

u x
r r

(25)

as can be seen from equation (23b).
. 0

When 8 = 0 we use the fact that zero

raised to the zero power is one and when 8 = 45
0

this matrix reduces to the

Hadamard matrix of order 2 which is equivalent to the discrete Walsh

transform, [7J. The matrix of equation (25) then become s

" -12-_



31

n-l

. n/2 I u x
( ) ='(21) (_I)r=O r rH x,u'n .

The transformation described by equation (26) also describes a class of

error correcting codes given by Hadamard matrice s of order 2. Another

. (26)

example of a Hadamard matrix which can be easily represented in the above

. described lexicographic notation is the powers of four matrix generated by

krone<:ker products of

M
r

=

111
1 1-1
1 -1 1

-1· 1 1

(27)

for all r. In this case equation (11) describes the matrix in closed product

form where p = 4 and m .. = -1 for all ifj = 3 and m .. = 1, otherwise.
. 1, J . 1, J

Consequently, equation (11) reduces to

H (x,u) =
n

n-l
IT ( ~ 1) 5(xr + u r - 3)

r=O
(28a)

n-l
~ 5(X + u - 3)
~ r r

Hn(x,u) = (-I) r=O

I where x and u range from zero through 3. This particular transformation
r. r

(28b)

has the property that each orthogonal vector in the matrix H has approximately
. n

the same number of zero crossings. This is to be contrasted to the Hadamard

(Walsh) transform which has N = 2
n

different number of zero cros sings.

:'13-
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The Walsh transform, equation (26), has been generalized to a much

'larger class of orthogonal transformations by Chrestenson [8J who has

described many of the convergence properties of this expanded dass. In

discrete matrix notation the generalized Walsh transforms of order p

require M for all r to be given by
r

ux
M (x, u) = [W ]

r
(27)

where W = exp{ 2TTj Ip} and simplifications can be made due to the fact that

W
UX ux mod p. F b N' d' l' d 1 h f h= W • or an N y lscrete genera lze Wa s trans orm were

n
N = p , the matrix is given by

H (x, u) =
n

p-l p-l
IT IT

i=O j=O

n-l

ij I o(x -i) o(u -j)
W r=O r r (28)

Note that the discrete generalized Walsh transform of order 2 reduces to the

Hadamard transform. It is also interesting' to note that the generalized

Walsh transform core matrix, equation (27), performs a Fourier transform

of resolution p. However, the kronecker product of the generalized Walsh

transform, equation (28), no longer performs a Fourier transformation.
'-. .

Conclusions

It has been the purpose of this paper to present a generalized closed
,.

product representation of certain classes of kronecker matrices. Vector

or matrix multiplications have been shown to be implementable in fewer

operations than normal matrix algebra requires. Powers of two kronecker

. matrices are described and are shown to be representable in simple product

-14-
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forms which reduce to parallel binary register operations in the exponents

of the core matrix entries. Orthogonal kronecker matrices are described

and generalized spectral analysis technques are presented. Finally, some

specific applications are presented in order to develop some practical

results using the concepts presented earlier. While the applications are not

. exhaustive, they do presenta few specific areas where processing with

kronecker matrices occupy ~ pertinent role.
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APPLICATION OF FOURIER-HADAMARD TRANSFORMATION TO

BANDWIDTH CO~reRESsioN

1. Introduction

'----The development of the fast Fourier transform algorithm [1-5]

has l~d to the investigation of the Fourier transform image coding

'~echnique whereby the two-dimensional Fourier transform of an image

is transmitted over a channel rather than the image itself [6-9].
I

~This investigation has itself led to the study of a related image

coding technique in which an image is transformed by a Hadamard

_matrix operator [10-13]. The Hadamard matrix is a square array

of plus and minus ones whose rows and columns are orthogonal to

one another. A high speed Hadamard transform computational algorithm,

similar to the fast Fourier transform algorithm, has~been developed

[10].

Figure 1 illustrates the block diagram of a generalized

transform image coding system._ In this system a transform is

performed on the intensity samples of the image. The image trans

form samples are then quantized and coded for transmission over

a digital link. At the receiver the received data is decoded,

and an inverse transform is performed to reconstruct the original

image. In principle the transforms could be implemented by optical,

electrical, or digital techniques. The experimental results presented

in this paper have been obtained for a general purpose digital

-'-computer implementation of the image transforms. No attempt has

been made to aetermine the "best" means of transform implementation,

--Cother than to-present' the most efficient computer algorithms.

-2. Image Transformation

An original image may be represented by an array of intensity

components or samples over the image surface by two-dimensional

sampling. In the transform coding system, it ~s conceptually

possible t~ transform_~nd process the entire image or subsections 

of the image. For a bandwidth compression application the "best"

/~<

--
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image or', subsection size is dependent upon· the degree. of- spatial

correlation of the image and the amount of processing permitted.

For the present discussion a complete image or a subsection of

an image is assumed to be a square array of N
2

intensity samples

described by the function f(x,y) over the image coordinates

(x,y). Then the two-dimensional forward Fourier or Hadamard

transform of the image a~ray, F(u,v), itself defined on a square
2array of N points, may be expressed as

...-F(u,v) =
N-1 N-l

1:
0

1:
0

·-f(x,y) a(x,y,u,v)
x= y=

(2-1)

'". -",!".

where a(x,y,u,v) is the forward transformation kernel. The trans

formation kernel for the Fourier and Hadamard transforms is separable

and sYmmetric, i. e.'

(2-2)

Hence~ the two-dimensional transform can be computed in two steps.

First, a one-dimensional transform is taken along each row of the

image, f(x,y), yielding

F(u,y) ='
N-1

1: f(x,y) a1 (x,.u)
x=0

, (2-3)

Next, a second one-dimensional transform is taken along each column

of l(u,y) giving...._--
- F(u,v? =

N-1
~O F(u,y) a1(y,v) '(2-4)

The reverse image transform is given by

N-1. N-l
f(x,y) = uE

o
vEo F(u,v) b(x,y,u,v) (2-5)

where b(x~y,u,v) is the reverse Fourier or Hadamard transformation

kernel. >"
o .
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It is often useful to express two-dimensional transforms in

matrix notation. For a transform kernel that is separable symmetric

let.

[f] = image matrix

'[F] = transformed image matrix

. [A] = transform matrix

Then by matrix multiplication'

[F] = [A] [f] [A]

(2-6) .

(2-7)

Now pre- and post- multiplication of each side of [~] by a reverse

. transform matrix, [B], gives

A,

[f] 5 [B] [F] [B] = [B] LA] [f] [A] [B] (2-8)

A' .

Where [f]is, in general, an approximation of [fl. If the'reverse

transform matrix is the inverse matrix (A]-l of (A] then

[il = [A]-l (A] [f] [A] [A]-l

But

[A]-l [A] = [A] (A]-l = (I]
. '._-_.-
-~here [I] is the identity matrix. Rence

(2-9)

. (2-10)

.. [t] = (f] = (A]-l [F] [A]-l (2-11)

Thus, f(x,y) arid F(u,v) can be expressed as two-dimensional transform

pairs if [A] has an inverse.

The Fourier transform matrix is a symmetric unitary matrix

having the property
//

..
[At

l = [A*]
....

'"
...,.-.-.

(2-12)
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where [A*] is the complex conjugate.matrix of [A]. The Hadamard
. ' .
• tra~sform is a real, symmetric, unitary matrix, called a symmetric. .

~rthogona1 matrix. For such a matrix.

= [A] (2-13)

.. The two-dimensional image function,f(x,y), may be regarded. .

as a one-dimensional vector by arranging the rows of [f(x,y)]

one after another in the following manner

[feZ)] :: .[f(l,y), f(2,y), ••• , f(N-1,y)]

Then the one-dimensional transform of [feZ)] given by

(2-14)

[FCW)] = [f (Z)] [D] = [F(1,v), F(2,v)., F(N-l,v)] (2-15)
--

2 2where [D] is an N by N tran?formation matrix, contains all of

. the elements of [F(u,v)]. Computation of the ·image transform by

the one-dimensional vector method eliminates the need for data

manipulation between stages that is inherent to the two-dimensional

method, but the transformation matrix size is doubled •

.-
3.

.'---

Fourier Image Transformation

The discrete Fourier transform, with and without efficient

._ computational. algorithms, has long been used for signal analysis--_._-_. .

[3].· Only re~ent1y h~ve Fourier transform methods been utilized

for image coding [6-9]. The two-dimensional Fourier transform of

an image field, f(x,y), may be expressed as

1 N-l N-1 -2~i
F(u,v) = N x~O y~O f(x,y) exp {~ (ux + vy)} (3-1)

The inverse Fourier transform which reconstructs the origin~l

image is given by
/" ..

...,...
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f(x,y) = ! N~l
N u=O

5

N-l
y~O F(u,v)

41

{ 2'JTi
exp ~ (ux +vy)} (3-2)

Since the transform kernels are separable and symmetric the two-
,

dimensional transform can be computed as two sequential one-dimen-

sional transforms.

The terms u and v are' called the sp'atial frequencies

of the image in analogy with time series analysis. When the

Fourier transform relationship is expressed in the form given by

equation (3-1) the origin, or zero spatial frequency term appears

in the corner of the transform plane. For display purposes it

is convenient to shift the origin to the center of the transform

. domain. This is easily accomplished by multiplying the image

by the function (_l)x+Y before the transformation [6].

Even though f(x,y) is a real positive function, its transform,

F(u,v), is in general complex. Thus,'while the image contains

N2 com~onents, the transform contains 2N2 components, the real

and imaginary, or magnitude and phase components of each spatial

frequency. However',' since f(x,y) is a real positive function,

• F(u,v) exhibits a property of conjugate symmetry [6]. Specifically

. F(u,v) = F*(-u,-v) (3-3)

As a result o~ the conjugate symmetry property of the Fourier

-transform it is only necessary to transmit the samples of one half

of the transfdr~ plane; the other half can be reconstructed
. *from the half plane samples transmitted Hence, the Fourier

transfor~ of an image can be described by N2 data components.

the two dimensional Fourier transform of an image is essentially

a Fourier series representation of a two-dimensional field. For

* A reconstruction of the original can be obtained from the half
plane transform samples direct~Y by a Hilbert filtering technique
[6"] • ."

""'f': ,_.
. c •
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the F~ur~er series representation to be valid the field must be

· periodic. Thus, the origin~l image 'must be considered to be

periodic horizontally and vertically•. The right side of the image
, .

therefore abuts the left side and the top and bottom of the image'

are adjacent_ Spatial frequencies along the coordinate axes of

'the transform plane arise from these transitions. Although these

are false spatial frequencies from the standpoint of being necessary
. . ..... -- .. ~-; . --

for representing the image within the image boundary, they do not

impair reconstruction. On the contrary, these spatial frequencies.

· are required to reconstruct thesbarp boundaries of the image.

The Fourier transform can be easily expressed in a matrix

formulation by letting

w-
Then

(F] = [A] [f] [A]

· where

.'

..
(3-4)

'(3-5)

--

O' ~O WO ° Y"/"-_. 1, WO . 1 2 3
W cw' y

.... -:~-- 2 ,;> .W
2 4 6
~ "'/· .

3 0 j,V3. . 1 •[A]= - ",(iN"
• •

0

o

N-l.

o 1 2 3 • N-l -
· CWO

2/-1
y2(N-l u

! (3-6)• ·
•

•

•

•

(N-l)
W

-" x~-
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·The matrix is obviously symmetric.

can be realized since

~ux = ~ux mod N

Computational simplification

t·

(3-7)

Computational algorithms have been developed which permit computation

of the two-dimensional transform with on th~ order of N
2

log2N

multiplications and additions [1-5].

Figure 2 illustrates the forward and reverse Fourier transforms

of two scenes computed on a general purpose computer and displayed,

on a cathode ray tub~ for photographic recording. The original

,of each scene contains 256 by 256 elements and 64 grey levels
. . .. ...

per element'. The logarithm of the magnitude is displayed rather

than the magnitude because of dynamic range limitations of the

. cathode ray tube and the film. There does nor·appear to be any

noticeable image degradation between the original and the double

transform for either scene.

4. Hadamard Image Transformation

The Hadamard transform is based upon the Hadamard matrix

which is a square array of plus and minus ones whose rows and

·'-Columns are orthogonal to one another [14-16]. If [H] is an

--~by N Hada~ard matrix then the product of N and its transpose

is

[H] [H]T = N[I] (4-1)

If [H] is a symmetric Hadamard matrix then equation (4-1) reduces

to

[H] [il] = N[I]

A Hadamard mat~ix multiplied by the normalization factor
,< ./

;..

.-

......

(4-2)

1
iN
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(a) logarithm of the magnitude
of the Fourier transform
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(b) inverse Fourier transform
of the Fourier trans!orm

, .
Surveyor spacecraft experimental box

·e

",

,. .

----- .'

(e)' logarithm of the magnitude
'of the Fourier transform

(d) inverse Fourier transform
o'f the Fourier transform

Surveyor spacecraft boom

Figure 2. ,Fourier transforms of scenes
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is an orthonormal matrix.

The lowest order Hadamard matrix is the Hadamard matrix
."

(4-3)

It is known that if a Hadamard matrix of order; N exists (N)2) ,

. then N=O (mod 4) •. The existence of a Hadamard matrix for every

value of N satisfying this requirement has not been shown, but

constructions are available for nearly all permissible values

. of N up to 200. The simplest construction is for a Hadamard

matrix of order N = 2n where. n is an integer. In this case

If [H] is a Hadamard matrix of order N, the matrix

1s a' Hadamard matrix of order 2N.
nHadamard' matrices of order N = 2 •

(4-4)

Figure 3 contains several

Other constructions are given

.. '-

- in references [17-19]. The set of known Hadamard matrices is

sufficiently numerous to satisfy almost all size requirements

for image coding.

A frequency interpretation can be given to the Hadamard

matrix. generated from the core matrix of equation (4-3). Along.... _---
. each. row of the ,Hadamard matrix the frequency is called the number

. of changes in sign. Harmuth has coined the word "sequency" to

designate the number of sign changes [20].' Figure 3 gives the

sequency interpretation for several Hadamard matrices of binary

order. It is possible to construct a Hadamard matrix of order

N = 2n that has frequency components at every.integer from 0

to N-l.

This frequency interpretation of the rows of a Hadamard
/

matrix' leads one to consider the rows to be equivalent to rectangular
.0

"o;r. .•
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waves ranging between _ 1 with a sub-p~riod of N units. Such

functions are called Walsh functions [21-25] and are further related

to"the Rademacher functions [26]. Thus, in this context the

Hadamard matrix merely performs the decomposition of a function

by·a set of ~ectangular"wavefcrmsrat~er than the sine-cosine

waveforms associated with the Fourier transform.
• :t'

; n
For symmetric,Hadamard matrices of order N =-2 , the two

"dimensional Hadamard "transform may be written "in series form as

-'"

where

1 N-l N-l (")
F(u,v) = - L L f(x,y) (-I)P x,y,u,V

N x=O y=O
. "

(4-5)

p(X,y,u,v) (4-6)

The terms ui ' vi' xi' and Yi are the binary representations of

u, v, x, and y respectively. For example

(4-7)

·where uie:{O,l}. In equation (4-6) the summation in the exponent

is performed modulo two. This representation of the Hadamard

transform is for the Hadamard matrix in "natural" form as given

...])y._equation (4-4)." Another series representation exists for a

"Hadamard matri~ in "ordered" form in which the sequency of each

row in l~rger than the preceding row. By this rep!esentation

where

1 N-1 N-1 ()
F(u,v) = - E L f(x,y)(-l)q x,y,u,v

N x=O y=O
(4-8)

q(x,y,u;v) (4-9)

and
/'

"/

"', "
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'(4-10)

The two-dimensional H~damard transform may be computed in

either natural or ordered form with an algorithm ~nalogous to
'- ..

:the fast Fourier transform computer algorithm [10,27,28]. Figure 4

contains cathode ray tube displays of the iogarithm of the magni

tude of the ordered Hadamard transform·of two scenes. In these

photographs the origin (zero sequency) appears in the lower left

corner. There is no noticeable image degradation between the

originals and the double Hadamard transforms.

s. Quantization of:I~age Transforms

To analyze the theoretical efficiency of ~oding the transform

of a scene rather than the scene itself, it is necessary to compare

.. _.th~ entropy of the spatial and transform domains. It has been shown

-.that the entropy of a scene and its Fourier transform are identical

[29]. The result also. holds true for the Hadamard transform since

its Jacob~an is unity. This property of image transforms, though

interesting, only establishes that under ideal coding the scene

and its transform can be transmitted with the same channel capacity.

It remains necessary to determine quantization and coding rules

for practical channels.

. .
/' The selection of quantization levels

can be made· on the basis'of minimizing the quantization error
'"or achieving a uniform entropy for quantized sample amplitudes.

'. -".-... . '.
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.Ca) logarithm of the· magnitude
of the Hadamard transform

(b) Hadamard tranSform of the
Hadamard transform

Surveyor spacecraft experimental box

---

(e) logarithm of the magnitude
of the Hadamard transform

(d) Hadamard transform of the
Hadamard transform

Figure 4.

Surveyor 'spacecraft boom

Hadamard transforms of scenes
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In either case it is necessary to know the range and statistical

distribution of the transform component· to be quantized.

·Fourier transform samples are complex numbers which may be

. represented in real and imaginary, or' magnitude and phase, form.

In either case there are two· components per transform sample that

must be quantized. As a consequence of the statistical characteris

tics of transform samples' [10] the rea:!, .F(u,v), and imaginary,
. R.

F1(u,v), components of the Fourier transform samples may pe assumed

to follow the same Gaussian distribution whose 'variance, a
2

(u,v),

. °is proportional to the power spectral density of the original image.

Hence.

....

1 .
2 - /2= [2na (u,v)] exp{

'2FR (u,v)
- .-=.=:--- -}

2
2a (u,v)

2
- FI (u,v)

-}
2

2a (u,v)

... (5-la)

(5-lb)

If the real and imaginary components are Gaussian, the magnitude

of the Fourier transform sample, FM(u,v), is Rayleigh distributed

FM(u,v)
= --":-----

a2(u,v)
exp{

2
- PM (u,v).......-'"":--- } .

2a
2 (u,v)

FM(u,v»O

(5-2a)

and its phase, Fp(u,v), is uniformly distributed

1
= 2n

Hadamard transform samples are real, bipolar numbers which can

be. represented by a single component per sample. The statistical

distribution of Hadamard sample components, Fn(u,v), may.be considered

to follow a Gaussian distribution of the form [13]

/" ·1 . 2

p{FH(u,v)}
'2----- - /2 FH (u,v)

= [2na (u,v)] exp { } (5-3)2
. ~

2a.(u,v)
"--"-
- .

'0'-1'.'0
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2When the variance function, a (u,v),is not kno~vn for, a particu~ar

image, or class of images, to be transformed, the function can usually

be modelled without seriously affecting the quantization process.

From examination of the Fourier and Hadamard transforms of a typical

image, it can be deduced that the variance function should be a

, maximum at the origin in the transform domain, be circularly symmetric,

and decrease in magnitude monotonically toward the higher spatial

frequencies. A two dimensional functionprocess~ng these characteristics

1s the Gaussian shaped curve described by

2a (u,v)
2 . 2

= S {~u + v }exp p , '(5-4)

where S is an amplitude scaling constant and p is a spread control

constant.'
--

In the quantization analysis the transform sample component

,.to·bequantized (amplitude, r~al part~ imaginary part, magnitude,

or phase) represented by the function Fc(u,v). The range of the

component is broken up into K positive and K negative bands.separated
. . (0 + .+ 2 + )by quantization levels Q

j
j = ,_ 1, - , ••• , - K where

(5-5 a)

...._-
--._---

..

) .
NA= -
2

-NA
"2

(5-5b)

(5-5c)

. The magnitude of a sample need only be quantized over the positive

scale. If a transform component falls in a band bounded by quan
tization levels Q. and Q.~ the component is quantized, and subse
quently reconstru~t~d, to the value F

j
'which lies within the band.

The relationship between quantization levels .and reconstruction levels

is given in figure 5.

,/

In the selection of transform quantization and reconstruction

levels the error criterion chosen will depend upon the application

of·the reconstructed images. The principle consideration is whether
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the image is to be used for subjective viewing or photometric measuie-

.ments. .~.

..

For subjective viewing ~he relative spatial error for low

brightness images provides an indication of image quality. This

relative spatial.error criterion is predicated upon the fact that

incremental brightness ch~nges in the reconstructed image are much
I

more noticeable if the brightness level is low than if it is high.

Thus, to. minimize the relative spatial error, the density of .~uantiza

tion levels in the spatial domain should be gr~ater at the lower

',amplitude levels. But, since the brightness of every point of a

reconstructed image is a function of the amplitude of a single transform

~ample, then by the same reasoning, the density of quantization levels

should be greater for low level transform samples. From psychophysical

tests, it is known that the human viewer is very sensitive to the

location of high frequency brightness transitions, but relatively

. insensitive to their actual magnitude. In fact images which have

. bee~ "crispened" by high pass filtering often appear preferable to

the original image. From this characteristic of subjective viewing

it would seem that the density of quantization levels, at low transform

sample amplitudes, should be greater at the higher spatial frequencies

than at the lower spatial frequencies.

Figure 6 exhibits several quantization laws that are useful

'--for 'quantization under a subjective viewing error criterion. The

,unfform or linear quantizer is commonly employed for quantization
, '

of the phase of Fourier transform samples. The Gaussian error function

qua~tizer follows the mathematical function

,..
F (u,v) =c .

erf [i(u,v) ]
i2 K(u,v) (5-6)

(5-7)

between the transform component, F (u,v), and the quantized transform
AI c

component, F (u,v), wherec .

/
. ,2 x 2

< erf (x)::,' .In b" exp {-z } dz

-'to"
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is the Gaussian error function and K(u,v) is a two-dimensional

positive function monotonically decrea~i~g with u and v. The
. .

Gaussian quantizer provides the desired nonlinear spacing of

quantization levelS as a function of the amplitude and spatia~

frequency of a transform sample. Furthermore, if K(u,v)

1s set equal to the standard deviation of the transform samples,

~(u,v), then the 'probability that a transform sample will be
I

quantized to a given reconstruction level will be the same for

all quantization levels if the probability density of transform

samples is Gaussian. This results in a uniform entropy for .all

- reconstruction levels, and therefore, a constant word length

code may be used for each quantized sample. The logarithmic

quantizer follows the function

·N

. Fc(u,v) = 1n {K(u,v)[F (u,v) + lJ}. c (5-8)

. .1n the positive quadrant and the inverted and reversed version

'of the function in'the negative quadrant. This function has

the same general characteristics as the Gaussian quantizer, but

does not produce an equal entropy for quantized samples.

If photometric me~surem~nts are to be made on an image the

cumulative mean square spatial error is a common fidelity criterion.

"-For- such a situation the quan£ization levels' in the transform

-.domain must be' selected to minimize the cumulative mean square.

error in'the spatial domain. Let

e -s
N-1 N-l ,., 2

L L {f(x,y) - f(x,y)}
x=O y=O

(5-9)

,.,
represents the·cumulative mean square spatial error where f(x,y)

1s the image reconstruct~on from the quantized transform samples,,..,
F(u,v). Then in a matrix formulation

'.
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N-1 N-1. - 2e a I I {[BHF] [B] - [B] [~'] [Bl}
s x=o y=o =

N-1 N-1
I I [B][{F-F}2][B]

x=o y=o
(5-10)

where [B] represents the· reverse transformation matrix.

Minimization of ~ in the spatial domain therefore can bes
accomplished by the minimization of the mean square error,

. t(u,v)~ {F - F}2, in the transform domain for; all.spatial frequen

cies. In the case of the Fourier transfo~m the mean square error

of the real and imaginary, or phase and magnitude, ~omponents

of a transform must be minimized. The mean square error of a

• transform component may be written in explicit form as

in which:

~(u,v)
It

f
Qj 2 .

= L (F - Fj ) p(Fc)d F
j=l Qj-1

c c

and:

-K Q.
(F - F

j
)2 p(F )d Ft_ (u,v) = I f j

j=-l Q c . c c
j+l

(5-11)

(5-12)

. (5-13)

,
..
~.

where p(F ) is the probability density of the transform sample
c

component to be quantized. Ifp(Fc) is a symmetrical prob~bility

ci"en-si.ty about QO = 0,· then e+ (u,v) equals e(u,v). Regardless

'ofthe form of 'p .(Fc) the quantization rule determined by the

min~mization ot ~+(u,v) is the same as that d~termined from 6:(u,v)

because of the symmetry of thequantizatio~ scale.

The optimum placement of the quantization and reconstruction

levels to minimize ~(u,v) has been determined by Panter and

Dite [30]. The reconstruction levels should be located midway
. .

between each pair of quantization levels. Thus:
./

/ ..

. .,.:.

-..,...
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(5-14)
\ '

(5-15)

NA (' )-1/3~2 l> [F], dF

NA
2

..
.' Tlie quantization levels can be determined approximately from

jNA -1/3 ::

b2K p [F] dF,

If the p[F] is a Gaussian distribution, then the quantization

levels computed above are more closely spaced for j small in

the same general manner as for the Gaussian error function or

logar~thmic quantizer laws.

Reconstructions have been made of 'the quantized Fourier and

Hadamard transforms of several scenes for the Gaussian and linear

quantizer rules, using a various number of quantization levels,

and with different variance functions [6 - 10]. The results

of these experiments are that from the standpoint of subjective

quality: the Gaussian quantizer performs best; 64 quanti~ation

levels are sufficient 'for good quality reconstr~ctions; and the

'~erformance is relatively insensitive to the exact formulation

of the variance function. Figure 7 illustrates' the quantization

of the Fourier and Hadamard transforms of a scene •

...._-
, 6. Bandwidth Compression

Transmission of the transform of an image rather than the

image itself opens up a wide area of investigation for the develop

ment of image transform bandwidth reduction techniques. Such tech

niques may be divided into two categories: those which are based

upon 'the unique structure of the energy distribution in the transform

plane, and those that seek to apply conventional" sp~ti~i domain
/'

bandwidth reduction methods to the transform domain in a manner
o

rather independent of its energy distribution. In general the
, ,

former class of methods provide_the best performance. Attempts

.........
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(a) inverse Fourier transform
of the quantized Fourier transform

..

. '. '.
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....._~-

,
(b) Hadamard transform of the
quantized Hadamard transform

64 quantization levels; Gaussian error function quantization law; Gaussian shaped
variance function

Figure 7. Quantization of the Fourier and Hadamard transforms of box scene
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.
. to apply spatia} domain bandwidth reduction techniques to trans-

form samples have not proven successful because of the large
- ---~- .--~--. - - -- .

dynamic ranges of tr~nsform samples and their relative lack of

correlation with one another [6].

Many transform bandwidth reduction techniques can be analyzed

from the viewpoint of two-dimensional sampling. In transform

sampling the forward' transform of an image, F(u,v), is multiplied

by a two-dim~nsiona1 sampling function, S(u,v), which ~akes on

the values zero or one according to some apriori or adaptive rule.

"The sampled transform is then

F (u,v) = F(u,v) S(u,v)
.8

(6-1)

Several transform sampling functions are listed in Table 1. The

.factor of interest is the closeness with which the reverse transform

of F (u,v) approximates the' original image. Taking the reverse
." 8 . '.. _'~.'

transform of F (u,v) yieldss

~For the Fourier transform the inverse transform of two transform

domain functions is equal to the spatial convolution of the spatial.

functions [6]. Hence

--

....._-
'. N-l N-1'

.- 1 . f':.\
~~f (x,y) = N" 1: 1:. f(a,a) s(x-a,y-a)= f(x,y)~s(x,y)
.. s. ,a=O a=o

- ..:. - ~,. . -;:, ."-

(6-3)

Unfortunately, the Hadamard transform does not exhibit the spatial

translation property. As a result equation (6-2) cannot be expressed

as a spatial convolution in the ordinary sense for the Hadamard

transform [31].

In general any sampling function can be expressed as

'.S(u,v) = 1 + R(u,v) (6~4)
_ .//2

where R(u,v) takes on the value ~ 1 as a function of the spatial

frequencies u and. v. The!nverseFourier transform of .the sampled

transform domain is then ,"

~"
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TABLE 1

Classifications of Transform Sampling Methods

Description Sampling ConditionsFun·ction
S(u,v) :

Checkerboard 1 + (_l)u+v
odd samples set tosampling 2

zero

. Random 1 with probability p
sampling 0 with probability l-p

Zonal 1 u,v € sampling region
sampling 0 U,v 4 sampling region•

Threshold 1 ·if IF(u,v) 1>1A"T(u,v)
sampling.

0 if IF(u,v)I~MT(u,v)

. "'---.:.-

..

--

..,..

/'

/
.".,..

...,.....
- -.
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(6-5)

where r(x,y) is the reverse transform of R(u,v). Thus, the

reconst.~uction of the sampled image is composed of the original

im~ge plus some additive interference that is dependent upon
.

the form of the original image and the sa~pling function.

As an example of deterministic sampling consider a sampling

-function

1 + (_I)u+v
S(u,v) = --2~-=--- (6-6)

which samples the Fourier transform of an image in a ~heckerboard

pattern. . For this case

R(u,v) = (_l)u+v ... exp {ilf(u+v)}-

and its inverse Fourier transform is .

N-l N-l {-27fi}
r(x,y) = I: I: exp !i7f(u+v)} exp . N (ux+vy)

u=O v=O .

• or

(6-7)

(6-8)

r(x,y) (6-9)

--Bence, the reconstructed image

----. - l' ~ . N' . N
- - f (x y) = - [f (x y) + f (x· + - Y + -)]s' .2- '- 2' 2 (6-10)

is composed of the original image overlaid by the original shifted

horizontally and vertically by one-half its size. Figure Sa

illustrates the experimental verification of this effect for the

footpad scene.

A non-deterministic sampling procedure has been considered,.
in which R(u~v) is a random variable assuming the values ~ 1.

/
o

..., :
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(a) checker board sampling
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(b) random sampling of all
spatial frequencies

(c) random sam..ding of high
spatia1 frequencies

Figure 8. Checkerboard and random sampling of the Fourier transform of the
Surveyor spacecraft footpad scene.
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If this random variable is highly uncorrelated s the additive

interference is spread out over the reconstructed image. This

'technique has been investigated for random sampling of the Fourier

transform of an image in which 50% of the transform components

have been sampled at random positions to yield a bandwidth reduc

-tion of 2:1. The reconstructed image of the footpad scene is

shown in figure 8b. With this type of random sampling the convolu

tional interference produces a significant amount of image degrada-
I

tion. Distortion in this im~ge is due principally to the convolutfon

of the high brightness (low spatial frequency) portion of

the footpad over the image surface. To overcome this difficulty

only the highest 90% of the spatial frequencies of the image

wer~ randomly sampled. The low spatial frequencies were completely

sampled. The reconstruction in figure 8c for this type of sampling

shows some improvements but the image distortion is still severe.

70 Zonal Sampling

In most' scenes of interest there is a fairly high degree

of correlation between adjacent image elements. For these types

of images the energy in the transform plane tends to be clustered

at certain spatial frequencies.

Figure 9 illustrates the percentage of energy within a circle

'centered at the origin of the Fourier transform plane for the

--,three.Surveyor'spacecraft scenes. For all three scenes 95%

of the image e~ergYis·contained in 1% or less of the Fourier

domain samples. With an image energy distribution such as that

shown in figure 9 the most obvious method of conserving bandwidth

is simply to not transmit the high spatial frequency information.

Discarding the high spatial frequencies is equivalent to passing

the image through a circulars zonal low pass filter; the result

is a loss of focus. Figures lOa and lOb show the effect of zonal
/:-.
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(a) Fourier transform
4:1 bandwidth reduction
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(b) Fourier transform
8:1 bandwidth reduction
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(c) Hadamard tra.nsform
4:1 bandwidth reduction
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(d) Hadamard transform
8:1 bandwidth reduction

Figure 10. Zonal low pass' sampling of the Fourier and Hadamard transforms of
the box scene.
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low pass sampling of the Surveyor spacecraft box. These experiments

;support the widely known fact that the high frequency brightness

transitions a~e important even though they are relatively few

tn number and contain a low proportion of the image energy.

However, if some degree of resolution loss is acceptable, zonal

lo~ pass filtering of the Fou~ier domain does yield relatively

large.bandwidth reductions.

Zonal low pass sampling or filtering can also be performed

in the Hadamard transform domain. Figures lac and lad illustrate

reconstruction of the lowest 25% and 12.5%, respectively, of the

Hadamard domain spatial frequencies of the box scene. Th~ image

degradation tends to be more noticeable for zonal fil~ering

of the Ha4amard.transform than for the Fourier transform for

the same bandwidth reduction factor because of the rectangular

shape of the two-dimensional Hadamard reconstruction waveforms.

The eye. is very sensitive to the presence of sharp brightness
. .

transitions within an image. With the Hadamard transform all

transitions occur within one element, whereas in the Fourier

transform the brigh~~ess transitions are spread over many

elements since the reconstruction waveforms are two-dimensional

.' sinusoids.

". ,.8•._Threshold Sampling

The difficulty with the zonal f~lter sampling method of band

width reduction is that large magnitude samples are indiscriminately

discarded. An obvious answer to this problem is to code only

those samples whose magnitudes are above a given threshold level.

Transform threshold coding experiments have been performed

for the Fourier and Hadamard transforms. Figure 11 shows the

location of ~amples above a threshold and the corresponding recon

structions ·from these samples for the Fourier transform of the
. .

box scene. If the threshold becomes too high the loss of the
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(a) map of transform samples
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; (e) map of transform samples
above threshold leve1

(d) reconstruction of samples
above threshold level

6.2 : 1 sample reduction

Figure 11.' Threshold sampling of the Fourier transform of the box sce~e
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. high spatial frequency samples becomes noticeable. For this

scene a threshold level which passes about one sixth of the transform

.samp1es provides. good quality reconstructions..,

Similar results have been obtained for threshold coding of

Hadamard transform samples~ Figure 12 sho~s maps of the location

of sign~ficant samples of the Hadamard transform of the box

scene and the corresponding reconstructions •.

..";,""

In order to achieve a bandwidth reduction with this threshold

technique o~ sample deletion it is necessary to code the positions .

·of the significant samples as well as their values. Position

coding, of course, adds to the transmission bandwidth. Statistical

~ata has been obtained on the number and location of significant

samples in order to determine useful codes and evaluate the amount

of bandwidth reduction possible. Figure 13 is a plot of run

lengths of significant samples of the Fourier transform of the

box for the threshold set to pass one-sixth of the transform

samples. For this scene the number of run lengths greater than

16 elements'is small so that the run lengths can be truncated

to 16 without appreciably affecting the distribution. For a

simple run length position code with a constant word length of

4 bits, a bandwidth reduction of greater than 4:1 is possible

for this scene. A'Huffman variable length code would result in

a slightly higher bandwidth reduction facto~•
....-- .

...._--
9. Summary

'The Fourier and Hadamard transform coding techniques appear to

be potentially useful for picture bandwidth compression applications.

With threshold coding of the transform samples, a bandwidth reduction

of 4:1 or greater is achievable with the Fourier transform. The

Hadamard trans~orm affords a slightly lower bandwidth reduction factor

for the same picture quality, but it can be implemented much more

easily than the Fourier transform•
./.
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Figure 12, Threshold ~ampling of the Hadamard transform of the box scene
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INTRODUCTION 75 "

High Speeddigital computers have made it possible to investigate

various transformations of data to implement bandwidth or dimensionality

reductions for communication and pattern recognition systems as well as

. 'for providing noise immunity coding domains for error correction coding

techniques. Multi-dimensional data can be efficiently transmitted over
I

,noisy, narrow bandwidth channels by transmitting a proper orthogonal

transform of the data. An inverse transform at the receiver reconstructs

the data. Suitable transformations must leave the entropy of the data
, ' ,

source unchanged but place the data in a form less sensitive to channel

errors and trlore amenable to bandwidth or dimensionality reduction.

, When the transformations are represented as linear operators in matrix

. , theory this leads to the requirement of. the existence of an inverse

operator.

A variety of matrix transformations, all implementable on the'

" order of pN log N computer operations, are considered. The first is
'~" ,P

r

the fast Fourier transform of an image in two dimensions. The counter-
..... _----_.

'part to the Fourier t~ansformJ with rectangular wave rather than sine
...... L-___

: wave orthonormal basi,S vectors is known as the Walsh or Hadamard,

transform. This transform is often implementable in an order of

magnitude faster than the fast Fourier transform because the operations

./

/-1-
"......
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are real and no multiplications are necessary. The Walsh or Hadamard·

transf~rm is a limiting case of a larger class of decompositions which

are also considered. For descriptiv~ purposes, le.t this larger class of

transformations be called the Good transforms of power 2 after their

'. inventor, I. J. Good [1]. Examples of these transforms are presented

in the context of image coding, but could have applicati,?n in other areas

of endeavor such as pattern recognition.

Figure 1 illustrates the block diagram of a generalized transform

. image coding system In this system a transform is performed on the
• 0

intensity samples of the image. The image transform samples are then

quantized arid coded for transmission over a digital link. At the receiver

the. received data is decoded, and an inverse transform is performed
. .. . .

to reconstruct the original image. In principle the transforms could be

implemented by optical, electrical, or digital techniques. The experi-

menta.l results presented in this paper have been obtained for a. general

.... purpose digital computer implementation of the image transforms .

......'... ..

The Fourier and Hadamard transforms have been a successful
.... _--- ...

means of coding images for noise immunity and bandwidth reduction [2].
,

~ The two transformations are similar in the sense'that they tend to
"

·f

compact correlated data in their r'espective transform domains.

Consequently, a very high percehtage of the energy in an image can be

. transmitted with a relatively few number of Fourier or Hadamard transform

,.
".

"

-
"::'-2-

, .
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This pr?perty has been exploited to achie~esignificant

bandwidth reduction factors. In addition, certain noise immunitr

characteristics can be developed for binary symmetric channels

with large error rates using the' transform domains. If those high energy

'. spatial frequency points' are error correction coded at the expense of not

transmitting the lowest valued transform data points then, given an
. I

. equal bandwidth transmission criteria, the coded transform domain

,} will result in visually better image reconstruction than ordinary spatial
".

domain transmission.

)(I1RHlJl-lBN - LGC:Vf;
-EIGENVECTOR TRANSFORMS

. '.

. An optimum transformation can be derived mathematically for

.' 'a mean square error 'rec~nstruetioncriteria. If a threshold is set i~

the transform do~ain,then the optimum transform for minimizing the

number of transform samples lying above the threshold while satisfying

a mea~square error criterion betwe'en the original. and the reconstructed
'.
"r~image is ~he Karhunen-Loeve transform (3-10]. This transform is
"-

rc~mp6sed ~f Eigenvectors of the correl~tionmatrix of the origi~al image,

,. or class ,of images, t?be coded, Let the original image, f(x, y) be made,.

, into one veCtor, "f(z}, by concatenating the lines of the image obtained in

the normal "raster" pattern s~anning technique. The correlation matrix

. of the image is an N
Z

by N
Z

matrix of the form*

. .;

[R] =E(z.z.}
1 J

i=I,Z,"',N; j=l,2,···,N

./
/.

(1)

*E('}' =expected or mean valti~' of the ~unction within the brackets',

~3-
.'
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. If the correlation matrix is not known, it can be estimated from an

ensem~l~ of original images. Let (fk(z)] re~resent the kth of n images

from which [R] is to be estimated. Then

In 'T' \fl-
'. _ [R] ~ ;- ~ l[fk(Z» [fk(z)] . . . .. ' . ..' . _(2) <.,,~

". - - - - .... C.\\~~. --~?
The forward Karhunen-Loeve transfor~lis the orthogonal matrix .;-yr-f

composed of the Eigenvectors of the correlation matrix arranged such that

(3)
, .

---

. where Al > AZ> -•••~ A
N

2 . are the Eige~values of [R] arranged in

descending order. The Karhunen-Loeve transform, F(w), of the

. o:riginal image is then

[F(vi)] =[f(z)] [A]

" And the reverse transform is". -:---__.

(4)

- '." - . 2 '
If only the fir st M of the N columns of [A] are employed in the'

' ..,
......---- tB] =[A]T ) J-i

_11
(5)

..
, transform, i. e. ,

' .

' ..

./

/'



[f(z»

~

1 XN
Z

matrix

".\l

.,-.
. [FM(w)] =
~

1 X'M
matrix

·79
[AM]
~

NZXM.
matrix

(6)

• 0

then the mean' square error, e:, is

NZ

£ ,= ~ Ak
k=M+l

Since the A
k

are monotonically decreasing in value the E:rror will be
. . ,'.

. .
. ·minimum for any M •

There are two major problems associated with the use of the

Karhunen-Loeve transform for image coding. The first is that a great

amoUnt of co~putationmust be performed. The correlation matrix must

be estimated if it is not known. Next the correlation matrix must be

.di.agonalized to determine its Eigenvalues and Eigenvectors. Finally,

the transform itself must be taken. In general, there is no fast

.

computational algorithm for t1).e transform. The second c:1ifficulty with

the K~rhunen-Loeve transform is that the mean square error is not a

--

.,

..... valid error criterion for many types of images. Because of the difficuities
............... . .

" associated with the Karhunen-Loeve transform the search continues for. .... " . , . .
-----..

,,

fast and efficient transformations which might be s~b-optimum in a mean.

square error reconstructibility sense but provide other desirable advantages.

Results of the Fourier and Hadamard transform have been c9mpared to

. the eigenvector solution for a certain clas s ·of signals with considerable

succes s [4].

./
/'

..
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FOURIER TRANSFORMS

. An original image may be represented by an array. of intensity

components or samples over the image surface by two dimensional

sampling. Fo"r the present discussion an image array will be considered

to be' a squar.e array of N
2

intensity samples described by the f~ction

, lex, y), over the image coordinates (x, y)~ The twb dimensional Fourier

·trans~ormof an image field, f(x, y), may be expressed as
".' "

..

F(u, v)
N-l N-l

= ~ ! ! f(x, y)
. x=O y=O

{
21Ti }exp - ~(ux+ yv)

,-

(8)

~e inverse Fourier transform which reconstructs the original image

. is given by

. --

1 N-l N-l {Z1Ti
"~_~-!(x, y) = N ! ~ F(u, v) exp N

'.u=O y=O .

lux +VYl} 'r

(~)

, Since the transform kernels are separable and symmetric the two

dimensional transform can be computed as two sequential one dimensional

". ."."transforms. The terms u and v are called the spatial frequencies of the
'-.

image'in-analogy with time series analysis •
.... __.,-- .

c.- ..

"-'
~ . Even though f(x, y) is a real positive function, its transform, F(u, v),

is in general complex. Thus, ~hi1e the image contains N
2

components,

. . 2
the transform contains 2N components, the real and imaginary or

magnitude and phase components of each spatial frequency. However, since

{(x, y) is a real positive function, F(u, v) exhibits a property of conjugate

symmetr,Y.
/

To illustrate this property let
- /,' .,

~

'" .':'- -6- -
"
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F(u;v) = ~Nil !-I f(x, y) {cos ~1T (";,, +~Y)~i sin ~ (ux + vy)} (10)

x=o y=O

The Fourier transform can be divided into real and imaginary compo~ent's
, , . . . .

as

where, since f(x, y) is real,

(11)

and

FR(U,v)
1 ~I ~-l 2TT .

= N ~ ~ f(x, y) cos "N(ux + vy)
x=O y=O .,

(12)

N-I N-I
'= ,1 ~ ~

N
.. x=O y=o

f~x, y) sin ~TT (ux + vy) . ". (13)

-, ":..-

. The ,cosine is even in U and v, and the sine is odd in u and v, hence

and

"--
Therefore

I . .

(l4a)

(I4b)

",
,,

'.

F(u, v) =F*{-u, -v) (15)

Asa result of the conjugate symmetry property of the Fourier transform

it is only necessary to transmit the 'samples of one half of the transform

'~lane; the other half can be reconstructed from the ha:lf plane samples

transmitted.

-7- .'
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Figure 2 presents three test scenes which have been two
. .., . ..

dimensionally Fourier transformed twice resulting in the original

images. The respective logarithms of the magnitude of the Fourier

'transforms are presented to describe the energy distribution in the

frequency domain. The logarithm function is used to avoid the

extremely large dynamic ranges obtained in the transform domains.

Notice the property of conjugate symmetry in the Fourier domains.

GOOD TRANSFORMS

The class of transforms alluded to earlier, denoted as Good

tr~nsforms by their inventor, can be constructed ,from Kronecker products.

The Kronecker matrix transforms are a generalized clas s of mathe- .

, ,m.a.~ical transformations that are amenable to highly efficient computer

implementation. Some of these matrices may be useful for image coding.
, .

A subset of the class 'of Kronecker matrix transforms are those matrtces

generated from two by two core matrices"(ll],

< .'

.... _--
---..

(16)

; The second Kronecker product becomes'

=

/'
"

-/

(17)
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and in general the'nth Kronecker product is given by

- A H
- [ n-l n-lH = -

n C H
, , _n-l n-l

B H ]Dn-l H
n

-
l

-

n-l n-l

• _When operating with kronecker matrices within a computer,' it

becomes desirable t~ store a representation (algor,ithm) of the entries

.- of the matrix rather than the matrix itself. Towards this end, consider

the locations in the ma~rix to be described by their lexicographic. or

dictionary sequence representation. In other words, a given index ot

matrix H can be represented by n digits each of which can take on -the- n _ _ - _ -

value zero or one. Representing the horizontal index by u and the

- -

vertical index 1>y x, the names of the rows -and columns in dictionary

-. sequence become the binary representation of the indices:

u=u u •n-l n-2
. . u.e{O,l}

1
-(l9a)

X =x x ···xx
- n-l n-2 I 0

x. e {O, I}
1 -_

. (19b)

<.~Using such a notation allows a closed product representation of the ~atrix

" -__ H to be expressed as
'n

,,
---

H (x,u)
Do -

n-l
= n-

r=O

xu Xu xu xu
A r r B r r err D r r

r r r r
(20)

where the exponent operations become Boolean "and" operations, and

the bar over the binary variable represents the complement value. For

the case in which A =A , B =B, C =C , D =D for all r and s,
r· s r s r s r s

the representation simplifies _to

/

.....".. _._-

'-9-

•o

_ o' .'
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n:-l
tux

'r=O r r
'R (x,u) =A

D .

n-l n-l n-l
t x u t x u I:

r=O r r r=O r r r=O
B ·CD

XU
r r

(21)

Equation (ll) is particularly well suited for special purpose digital

implementation as the exponent operations require simply counting the·

number of "ones" obtained from a parallel component=cwi,se- register "and"
, .

operation on the values of u and x. This means that generation of the rows,

.. columns, or specific elements of the matrix H requires storage of only
, . n

four variables (A, B, C, D) and simple register "and" operations for

any dimensions N = In.
.:: ,"

,'Orthogonal matrix transformations are particularly desirable

for pres,erving inner products as well as describing a generalized

spectral analysis transform domain. For the power of two case the

orthogonality constraint ~n the sets fA ,B', C ,D } for all r = 0, ••• ,n-l
r r r r

reduces·to

--

.... _.--..
= 1

= 1

, (22a)

(2lb)

" ,
I

AC +BD =0
r r r r

.for each r. In this case equation (lO) becomes the kernel of the transform

and when the sets' (A ,B ,C ,D } are all identical, equation (ll) becomes
r r r r

the kernel.

"

If it is desired to make the kernel matrix symmetric so that a- ,
:'/

transformation taken twice results in the original function again, then further
', ..

. '
"

"". "

-10-
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'simplifications res'ult in the closed form representation of the matrix

, H • ',The requirement for symmetry and orthogonality for the case of
n

identical sets fA ,B ,C ,D } for all r is
r r r r

B =C (23a)

A2'~ B 2
= I (23b)

;
I

B
2

+ D
2 =1 (23c)

f·

(A+D)B = 0 (23d)

The entries of the matrix H then become
n

»-1 n-l n-l
tux tuG)x I:ux

r=O r r r=O r r r=O r r
H(x,u) =A B D

n ,

h ~ 1>.E.N01"!E.S 1·'",,'B l' '.were \±I '1mp l'e-S- an exc USlve or 00 ean operatlon. Notice that

(24) -

the exponents can be determined by summing the result of parallel register

operations (Boolean "and" Boolean "exclusive or") on the variables u and x.

However, equation (24), under the constraint that B =0 satisfying equation (23d),

.".....;educe s to

"
".---:.-

._-----
n-l n-l
t u t'u

, , 0 r 0 rr= r=
H (x, u) =A D 6(u-x)

n

n-:-l
t u

(A
D) r=O r

H (x,u) = 6(u-x)
n

(2Sa)

(2Sb)

which is a diagonal matrix. The alternative constrain~ to equation (23d) is

/' ,

that A =-D in which case mor~~interesti.ngorthogon~l symmetric
, /'
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matrices result. Thus,
.

, -. 'n~l

t u 0 x
, r=O r r

°H (x,u) ='A
n

n-l' ~-1
tuG)x tux

r=O r r r=O r r
B (-1) . (26a)

·or

'H (x, u)
n

..
n-l
tux'

r=O r r
(-1) (26b)

...

'.;::.".

where 0 is the Boolean "coincidence" operation equivaie.nt to the

complement of the exclusive "'or" opeJ;ation. The class of orthogonal

matrices described by ,equations ,(?6a) or (26b) a.r,e a two parameter family

of sets of kronecker matrices subject to the constraint that A
2 + B

2 =1.
r _ -. '. .

Cohsequ~ntly, valid 2-tuples, satisfying this ;oequirement are [cose, sine},

{I, OJ, {3/5, 4/5}, (1/vz, llfi} and many others.

c:-'-::, :.: ... A trans!orm of particular interest is ~hat given by.the Z-tuple

{-l/{2, i /42}., This results in the discrete Walsh t_ransf~rmwhich is _

". ~quivalent to the orthonormal representation of t4e Hadamard matrices
' .......

generated by the core matrix-

--

" H '=
. 1 [1 .'.IJ

1 -1
(27)

. Figure 3 contains several Hadamard matrices of order N =Zn.

A frequency interpretation cap be given to the Hadamard matrix

generated from the core matrix of equation (Z7). Alo~g each row of the

, Hadamard matrix the frequenc0s called the number of cha~ges in sign.
//

",
::.-12- -
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Harmuth has coined the 5Nord "sequency" to designate the number of

sign changes (12].: Figure 3 gives the sequency interpretation for

several Hadamard matrices of binary order.

n·. For symmetric Hadamard matrices of order N =2 ,the two

dimensional Hadamard transform may be written in series form as

N-1 N-1 .
F(u, v) =~ ! ~ f(x, y)( -1 )p(x, y, u,;v)

x=O y=O

. where

'(28)

p(x, ¥, u, v) ==
N-l

!
1=0.

(u.x. + v.y.)
1 11 1

as seen from equation (26b). The terms u., v.·, x., and y. are the binary
III 1

representations of u, v, x, and y, respectively•. In equation (28) the summation-

in· the exponent is performed modulo two. This representation of the

.- Hadamard transform is for the Hadamard matrix in "natural" form•

.Another series representation exists for a Hadamard ma~rix in "ordered"

form in which the sequency of each row is larger than the preceding row.

". By this representation

...... __._~
-;---.

where

.. F(u, v).

. ,

N-l N-1
= ! !.! f(x, y) (_l)Q(x,y,u,v)

N .
x=O y=O

(29)

n-l
q(x,y,u,v) - ! rg.(u)x. + g.(v)y.]·

.. i=O L 1 1 1 1

and

(30)

. ~
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. . '

"go(u} :; u
n-l

,

gl (u) :; u + un-l n-2

gZ(u) :; u +u '(31)
n-2 n-3

•
•
•

gn.;.l{u) :; u
1

+ U o

Figure 4 presents the three test scenes with their respective

. .

Hadamard domains. Notice again the use of the logarithm function to

control the large dynamic r'ange for display purposes. 1'he Hadamard

. transforms presented in Figure 4 have had their "sequencies" ordered and

consequently the low sequency (high energy) terms tend to bunch toward

the.origiii.

While the Hadamard transform has received considerable a~tention

(often under the na~e of the discrete Walsh .transform) it' is important

to note that this transform is the limitingcas~of the powers of tw'o
.......

..... l<ronecker Good transforms presented above. In the context of equation (26b)

..-

....... if

,,

----- ..

-"'---
A ~ cosS

B = sinS

(32a)

(32b)

then as S var"ies between 0
0

and 45
0

the transforms vary from a di~gonal

matrix to the Hadamard matrix at 45
0

• In the proces s of va~ying e over

. /

.... /'

" '-14_
-
"- .-'--
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this interval the transformations have ranged from having all of their

. .

energy on the diag~h.al at 0° to uniform "energy spread at 45
0

(Hadamard

case)·. Figure 5 presents the transforms of the box test scene for

."

four.different values of 8. It is evident from this figure that the transform

which compacts the image into the fewe st significant coefficients is

the Hadamard transform•

. COMPUTER IMPLEMENTATION

The und~rlying concept"in the search fc:>r an efficient computer

algorithm for any transformation is the fact that if the transformation does

: 2 .. .
not use all N degrees of freedom offered by an ordinary matrix, then

the· redundancy in the definition of the transform can often be removed

" in ,the implementation process. This has led to the Cooley-Tukey

algorithm [13] as well as a variety of modifications for a fast

Fourier transformation [1~J.. In such cases the number of complex

ope~at!ons is on the order of N 10gZN where a compl.ex operation consist.s

,. of a complex add and a complex multiply. For the case of the Fourier,". . .""

.'" transforms described in this paper, when the Fourier transform relation-.. ... ------.. .

.ship is,expressed in the form given by equation (8), the origin, or zero
.. _---

" spatial frequency term appear s in the corner of the transform plane.
. "

. ' For display purposes it is convenient to shift the origin to the center of

the transform domain. This is easily accomplished by multiplying the

image by the function {_1)xty before the transformation. Let

""-

",

----.- - - -~- ----" .- ------
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(33)

- _-But since

the function G(u, v) may be written as

1 N-l' N-l {- 2-·
G(u, v) = N ! ! f(x, y) exp _ ~_1

_ x=O y=O ,

-or

; ,
I _

(34) -

(35)

Thus, the origin moves to the center of the transform domain~ -

(36)
.-

- -

For the class of Good_ power of two matrices presented here

trans.formation imple~entationrequires lNloglN real operations. This
. . .. . . .

- • - ,- - 2 --'
should be contrasted with the N _operations normally required. This result

"

".' ,

"'" was pointed out by Good [15J and leads to the fast Fourier transform

algorith~-[13J as well as the fast Hadamard transform algorithm [16~17J.
----

" The class of kronecke·r matrices described earlier can be decomposed into

~ a product of matrices each of which has only l entries in a given row or

column. Thus for the H kronecker matrix' of equation (18) there exist, n - - ,

n matrices, each of dime'nsion In, such that when multiplied together, they

will equal H • These matrices can be described as
n

/'
/

'- . ,, -

;£.

" -.~ -16-
'"
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Then

H =G G···G G .
n n-l n-Z 1 0

...

'~ow if a vector is multiplied by H , N
2

operations will be required
. . n

wh~~e~s if the vector is multiplied by G
n

_
1

, ZN operations will be

~..req~i~ed. ~f the resulting vector is multiplied by G
n

_Z" another ZN

"operations will be required. If this step is carried out n =log N times,
. .,.-.:....... . . ' p .

.then a total of ZN logZN operations are necessary.

(38)

-
" ~

,., . .

The gOc;>d algorithm just described can be used to implement

the Walsh or Hadamard transform mentioned earlier. However, the

. sequencyterms will not be ordered as is desirable for display purposes.

Consequently, a permutation matrix must be incorporated for the ordered.

transformation. Implementation of such a permutation requires only N more
,/

.:-17--

..
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"

'operations in the computer and therefore is inconsequential as far

as comput~r time is co~cerned. Figure 6 depicts the re suIts of

ordering the sequences in the Hadamard transform. The output has

been thresholded at a co~stant value for both ~e ordered and unordered

cases for optimum display purposes.. .
'.

,BANDWIDTH REDUCTION
, "

,-, Tr~smission of the transform of an image rather than the

image itsel~ opens up a wide area of investigation for the development
. . . .. .

of image transform bandwidth reduction techniques. While it is not

the intent of this paper to delv~ deeply into th.e bandwidth reduction

. po:ssibilities afford~d by image transform coding, two experimental techniques

are presented as pos sible applications.

The first technique is a non-adaptive zonal filtering approach. '.

which !ndiscriminantly removes data outside the bandpass zone of intere.st.

-_.Zonal filtering has its greatest potential with those transforms which
'."' - ' -

"are "correlated-energy" computing such as the Fourier and Hadamard
----,

,cases. _Jf.or a highly correlated image a zonal filter centered around the-- . .

" lowest frequency or sequency term aff~rds a large bandwidth reduction
,

with little energy loss in reconstruction. Figure 7 exhibits a low pass

filtered version of a test scene with respective bandwidth reduction factors

obtained. This figure demo~strates that the loss of information due to high,

spatial frequencies is quite significant t'o the human observer. Consequently,
./ . .

-'

..
';-18-
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an energy criteria is not th~ best guide for image reconstruction. Zonal

filterin.g"is less usefui~for transformations 'on images in which the image

energy tends to spread itself out over the transform domain. It is. .

.evident from Figure 5 that the transform with the most compact energy.. .

is that of the Hadamard while the least compact energy transform is that

of the diagonal matrix. Figure 8 gives added evidence to this fact. A

I

quarter circle zonal low pass sequency filter, which provide's approxi-

.matelya 5:1 sample reduction ratio, has been used to filter the transform

domains of the box test scene. The recons.truCted images indicate that

the best transform domain for zonal filtering is the Hadamard.

~. The second technique ailuded to earlier for bandwidth reduction

is that of threshold coding.

. The difficulty with the zonal filter sampling method of bandwidth

.' reduction is that large mag'nitude samples are indiscriminately discarded.

An obvious answer to this problem is to' code only those samples whos~

.: magnitUdes are above a given threshold level. With this coding method it
. .

"."'..
becpmes necessary to provide information as to the location of significant

, '.' . .

samples.· However, the technique provides an adaptive sampling approach
,

.tobandwidfu"I:eduction•
. '.,

For transfor.m threshold coding the "best" tr~nsform is one which

maximizes the number of tran'sform samples which are. zero or near zero.

Ithas been pointed out that to minim.ize the mean square e'rror between an

original signal and a transform reconstruction for threshold sample deletion,

,/
/

·.-19-
. '-

--

'. ~

.. io_



-94
. ,

.,

the optimum transfqrm is composed of Eigenvector s of the correlation

mat:rix of the data. Since mean square error has not proven an

effective measure of error between images, the usefulness of this trans-

form remains in doubt. ,Further investigation of the application of the

Eigenvector transform to image coding is' required.

. I,

" Transform threshold coding experiments have been performed

for the, Fourier and Hadamard transforms. Figure 9 displays a map

of the transform domains with ali the samples above the threshold set
, ,

to white. The reconstructed images" are obtained by inverse transforming

the original transform with values below the threshold set to zero.

In order to achieve a bandwidth reduction with this "threshold. . .

". technique of sample deletion it is neces sary to code the positions of the

significant samples as well as their values. Position coding, of course,

adds to the transmission bandwidth. Statistical data must be obtained on

the number and location of significant samples in order to determine

~"useful codes and evaluate the amount ofbanciwidth reduction possible.

'''. '

NOISE IMMUNITY
.... _---

... -:.-

,, . The major adva~tage of imag'e transform cOdi"ng other than its

;
potential for bandwidth reduction is the tolerance to channel errors that

.transform coding affords. The inherent "error averaging" property of
" .

transform coding combined with error correction coding of transform

samples' provides a means of"image coding for which" channel errors are less
./

;/>/
0,

~"

, -.,
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"deleterious than for conventional spatial coding of an image.

,To illustrate the error tolerance feature of transform coding a

binary ,symmetric channel will be assumed as a model for the channel

and ,Fourier domain exampl~s will be used. The extension to other trans-

. ,

" .form domains is apparent. In the binary symmetric channel the probability

,of receiving an incor'rect symbol is given by p for the tr~nsmissionof ones

'or zeros.

'-,An intuitive justification for transmitting the frequen~y rathe r

than the spatial domain of an image is the fact that for many transforms

the channel noise introduced in the transform of an image tends to be

distributed ev~nly over the entire reconstructed image. Consequently

_the noise manifests itself as a low frequency effect in reconstruction.

Since the eye is 'more sensitive to the h~gh fre~uency "salt and pepper"

effect of ch~nnel n?ise in the spatia:! domain, the same channel noise power

,in the frequency domain is 'somewhat less offensive. A quantizing and coding
• . ' r

. . ' .

. _, m.ethod can be developed to take advanfage of the inherent high frequency
" .

or "salt and pepper" noise immunity tha~ Fourier domain coding offers.
'"" ----- ...'

As a first step in this ,direction, a requirement will be made that each--- -

'~, ,quantum level occur equally likelyas any other quantum level. This

,quantization criterion will guarantee that each code word is equally likely

to occur and will avoid any unexpected noise biasing, since the binary

symmetric channel effects eac:;h code bit, and therefore each code word,

independently of all others.

.'

-., .. 21-
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Figure 10 contains a series of eXperImental results for the

Fourier transform of the footpad scene using a Gaussian quantization,

law with a variance changing as a function of frequency according to the. .

.power spectrum of the odginal scene. The footpad and its quantized. '

Fourier transform are pas sed through the same binary sym~etric .

I

"channel for two different error probabilities. The frequency induced

Doise energy which is concentrated in low frequency variations is

so large that"high frequency information is lost due to normalization in

.reconstruction. This can be explained by the fact that the absolute, as

opposed. to the relative value of a bit error is much larger in the regions

wher~ the power spectrum is large. In the power spectrum of most

ilnages, the larger values occur at the lower frequencies, and thus the lower

-frequency noise errors have a greater effect on the reconstructed image

in the spatial domain. Further demonstration of this effect is afforded by

Figure-II. Figures 10c and lOdare the footpad noise scenes with error rates

. <,0£10- 1 introduced in the space and f~equency do~am respectively. Figure

'. lla is the .r~sult of the same error rate channel noise in the frequency domain

but w;t4-Z'OX 40 or 800' of the lowest spatial frequencies transmitted error:'
,,

free. It is evident from Figure -1"ta that the noise energy is now concentrated

in the higher frequencies. Figure lIb has the lowest 6500 spatial frequencies

transmitted error free.

As a result of the statistical regularity of samples in the frequency

domain, a much smaller amount of error correction in this domain will yield

'>-22--
"
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· a far better noise immunity than the same amount of error correction in

the spatial domain. It is natural to develop an error correction rule

to correct for errors only in the large power 'spectrum regions. It is. '.

important to emphasize that the coding technique used for the Fourier
'.

domain should be tailored to a particular channel capacity. If the
;

-j .
channel noise has an error rate less than ab.out 10 '. then it appears that

DO error correction is necessary as in Figure lOb. However, under the

circumstances of a high error rate, it often becomes more desirable

to .transmit as many error corrected samples as possible at the expense

of not transmitting the entire frequency plane. Using such a system,

· corrected, but not necessarily errorless, data could be received until
· . . .

· normal picture bandwidth has been reached, at which t.ime transmission

is terminated. In order to implement such a scheme, an error correcting

· code must be selected. The code selected will depend on how much of the

frequen·cy domain will be omitted due to the increased error correcting

....
'c;apability of the code.

··A -specific example of the potential of the Fourier coding technique

is prt:.s~nte-dbelow. A high error rate channel is assumed with rate
,
, -2
:P =4 X 10 • The equal bandwidth criterion is .assumed. Consequently,

the Fourier coding technique requires the exact same bandwidth as

co~ventional spatial domain transmission systems. The error correcting

code must have at least six information bits. Two such codes which

become ca~didates for implementation are a first order Reed Muller code

. ~'.. .

--

'.
..... -
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. and a Bose Chaudhuri-Hocquenghem (BCH) code [18;19, pg. 163]. The

particular Reed Muller code of interest is a (32, 6) code in which the

minimum distance between code words is sixteen, and therefore, the

code is capable of correcting a total of seven errors. The BCH code is

a (31,6) code and is also capable of correcting seven errors. The BCH

code will be used in the example. Utilizing an error cor.recting code

capable of seven error correcti~ns does not mean that the six information

bits will be received over the noisy channel error free~' Since each code

word lengthhas been increased to thirty-one bits, eight or more errors

. per code word cannot be guaranteed to be corrected. The probability of

having 'eight or more errors:in the BCH code is given by the partial sum

of the binomial distribution
..

(39)

where p is the binary symmetry channel error rate•. This probability is.
. .

. .

":'·an upper bound for the incorrect reception of a code word since the. . ., . .

possibility 9f correct r~ception for greater than seven 'errors still exists

; corrected data samples will be received with probability of error no greater
I .

-5than 2.26 X 10 [20]. Figure 12 displays the results of this' error correcting

,
.'

-----
but is. unknown.

. .
For the specific channel error rate of 4 X 10-

2
, the error"

p:J:'ocedure. ;Figure 12a a.nd 12c are two test scenes whose spatial domains
. . . .

are transmitted thr'ough the binary symmetric .channel with the abo~e error

rate. Figure 12b and 12d are the error correction Fourier domain
/"

'.
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transmission results for each of the test scenes. While there is a

loss of high frequency information in Figures 12b and 12d, there is

a marked improvement over the spatial coding in Figures 12a and

12c. It is evident that this particular type of coding offers a considerable

advantage for very noisy communication channels.

CONCLUSION

. This paper has demonstrated a variety of transform coding

..
techniques using orthogonal matrices as apPlied to image processing

for digital communication systems. The optimum transform in a mean

square error sense has been described as the Karhunen- Loeve or

'. ~genvector trans!or~. Experimental implementation of the FourIer

transform o!images has resulted in'a tr:adition.al spectral decomposition.

The square wave .a~alogy to the Fourier transform~.know~ as the Hadamard

or disc}'ete Walsh transform, has also been implemented for image coding.

"' The Hadamard transform has been shown to be a limiting case of a much
'': .' . . . .. '

"l~rger class of transformations referred to as the Good transforms. All the'
... ----

."

transformations presented have efficient computer implementation algorithms
. .

S stemming from some degree of redundancy in the definition of the transform-

ations. Finally the application of transform image coding to bandwidth

reduction has been experimentally presented for both the Fourier and Hadamard

transforms. The concepts of error correction coding techniques applied to

.image transform domains have ~een demonstrat~dfor the Fourier case with
/ .

./
extension to other transforms likely.

'.

~
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Figures

Image Transform Coding System

<'.--' -

Fourier Transform Image Test Scenes ,
a) Logarithm of the Magnitude of the Fourier Transform
b) Double Fourie r Transform "
c) Logarithm of the Magnitude of the Fourie r rransform
d) Double Fourier Transform
e) Logarithm of the Magnitude of the Fourier Transform
1) Double Fourier Transform I

, '. n
Hadamard matrice s of orde r N=2

Hadamard Transform Image Test Scenes
a) Logarithm of the Magnitude of the Hadamard Transform
b) Double Hadamard Transform

, c) Logarithm of the Magnitude of the Hadamard Transform
-d) Double Hadamard Transform
e) Logarithm of the Magnitude of the Hadamard Transform
1) Double Hadamard Transform

Good Transforms as a Function of
a)e.=Oo Diagonal Matrix, Magnitude Display, Maximum

'Value = 63 ,. 'o '!'

b) 8=15 Threshold- Display, Maximum Value = 1.200
,C)8=30: Thre.s~old Display, Maximum Vc:.lue = 6,611'
d)8=45 Hadamard Transform, Threshold Display, Maximum

Value = 11, 486

Hadamard Transform of The Box
a) Unordered Sequencies
b) Ordered Sequencies

'~---.

Figure 7,,:,":-

,,

Figure 8 -

",

Low Pass' Zonal Fourier Transform Filtering
a) 98.3 %Energy Transmitted, 32:1 BWR
b) 99.8' %Energy Transmitted, 8:1 BWR
c) 99.9 %Energy Transmitted, 4:1 BWR

Zonal Low Pass Filtering
o '

a) 8=30 5:1 Sample Reduction
b) Hadamard, 5:1 Sample Reduction
c) Hadamard, 8:1 Sample Reduction

.....
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Figure 9 Threshold Coding
a) Map of Samples Above Threshold

. b) Fourier Transform of Thresholded Samples
c) Map of Samples above Threshold
d) Hadamard Transform of Threshold Samples

Figure 10,- Binary Symmetric Channel Noise in Spatial and Fourier
Domain_~ransmission ...

a) 10 Error Rate in the Spatial Domain
b) 10- 3 Error Rate in the Fourier Domain
c) 10-1 Error Rate in the Spatial Dom~in .'
d) 10-1 Error Rate in the Fourie r Domain

',./

..

. Figure 11

. Figure 12

Effect of Low Frequency Errors
a) Reconstruction with the 800 Lowest Spatial

Frequencie s Errorle ss
b) Reconstruction with the 6500 lowest Spatial

Frequencies Errorless

Equal Bandwidth Error Correction Technique
a) 4 xlO- 2 Error Rate in the Spatial Domain
b) Error Corrected Retransformation

. c) 4 x 10- 2 Error Rate in the Spatial Domain
d) Error Corrected Retransformation
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